Таблицы в оракл как построить. Задания для самостоятельной работы

При ЧМ в соответствии с модулирующим сигналом (t) меняется частота синусоидального несущего сигнала, что иллюстрирует рис.11.

Заметим,что
, а соответственно и частота может меняться не только резко, но и плавно.

Для ЧМ существует два параметра, характеризующие интенсивность воздействия модулирующего сигнала на несущий сигнал.

    Девиация частоты

f = f max – f 0

или f = f 0 - f min

f - отклонение частоты от центрального значения.

    Индекс частотной модуляции .

Это отношение девиации частоты к частоте модулирующего сигнала.

0    несколько десятков или сотен.

Частотный спектр при ЧМ.

Его можно получить на основе ЧС при АМ.

Пусть модулирующий сигнал является последовательностью прямоугольных импульсов, т.е. имеет два уровня.

В модулированном ЧМ – сигнале соответственно будет две частоты
и
- рис.24,б. Его можно представить в виде суммы двух АМ – сигналов рис.24,в,г.

U ЧМ = U АМ1 + U АМ2

Соответственно, спектр этого ЧМ - сигнала S ЧМ можно представить в виде суммы двух спекторов АМ: S ЧМ = S АМ1 + S АМ2

Это показано на рисунке 25.

Рис.25

Спектры двух слагаемых S АМ1 и S АМ2 отличаются разными несущими частотами f 01 и f 02 . Это объяснение приводит к выводам:

    Спектры ЧМ шире, чем спектр АМ - сигнала.

    Спектр получается «горбатый».

    Линии одного спектра S АМ1 могут перекрываться линиями другого спектра S АМ2 .

    Из рисунка получаем, что ширина спектра при ЧМ:

В этом выражении – спектр модулирующего сигнала.

f 02 – f 01 = 2f

- девиация частоты, связанная с f 02 и f 01 .

Если также учесть, что:

, то в результате получаем: F ЧМ = 2 F  (1 + )

Вывод: ширина ЧС при ЧМ больше чем ширина ЧС при АМ в (1 + ) раз.

12. Способы импульсной модуляции (им).

При ИМ переносчиком является последовательность импульсов.

Параметры импульсного сигнала - амплитуда (U m), период или частота (Т или f = 1/T), длительность импульса (t u), фаза импульсов ().

В соответствии с этими параметрами различают способы ИМ:

    Амплитудно – импульсная модуляция (АИМ) – Um.

    Частотно – импульсная мод-ия (ЧИМ)- f.

    Широтно–импульсная мод-ия (ШИМ) - t u .

4. Фазо – импульсная модуляция (ФИМ) - .

При АИМ амплитуда является функцией модулирующего сигнала. При ЧИМ функцией модулирующего сигнала является средняя частота (или период) следования импульсов.

При ШИМ функцией модулирующего сигнала является

длительность импульса. При ФИМ функцией модулирующего сигнала является время паузы между соседними импульсами.

Кодо-Импульсная модуляция (КИМ).

Отличие: какому-то одному значению модулирующего сигнала  соответствует несколько импульсов (последовательный код). Последовательный код – двоичное число:

1 – есть импульс,

0 – нет импульса

КИМ – один из ключевых способов передачи информации, применяется для связи между компьютерами (Интернет, модемы и т.д.)

При КИМ увеличивается время передачи сигнала, но обеспечивается высокая достоверность и высокая помехозащищенность.

Комбинированные способы модуляции (км).

Комбинируют, например, непрерывные способы модуляции с импульсными способами модуляции.

При КМ вначале, например, используется импульсный передатчик, а получаемый модулированный сигнал модулирует непрерывный передатчик (в синусоиду).ШИМ – 1 этап модуляции.

Это пример ШИМ-АМ.

Комбинируя разные способы импульсной и непрерывной модуляции можно получить большое количество комбинированных способов. Например, ФИМ-АМ, ШИМ-ЧМ, ЧИМ-ЧМ, и т.д. Применение КМ связано с тем, что требуется приспособить передаваемый сигнал к характеристикам канала связи.

Обратимся к модулированным сигналам, полученным путем изменения по закону передаваемого сообщения в несущем колебании частоты w 0 , или начальной фазы j 0 . Поскольку в обоих случаях аргумент гармонического колебания y(t ) = w 0 t + j 0 определяет мгновенное значение фазового угла, такие радиосигналы получили название сигналов с угловой модуляцией. Если в несущем колебании изменяется частота w 0 , то имеем дело с частотной модуляцией (ЧМ), если же изменяется фаза j 0 – фазовой модуляцией (ФМ).

Частотная модуляция. При частотной модуляции несущая частота w(t ) связана с модулирующим сигналом e (t ) зависимостью:

w(t ) = w 0 + k ч e (t ) (5.1)

здесь k ч - размерный коэффициент пропорциональности между частотой и напряжением, рад.

Рассмотрим однотональную частотную модуляцию, когда модулирующим сигналом является гармоническое колебание e (t ) = E 0 cosWt , у которого для упрощения начальная фаза q 0 = 0. Пусть также начальная фаза несущего колебания j 0 = 0. При необходимости начальные фазы q 0 и j 0 легко могут быть введены в окончательные соотношения. Полную фазу ЧМ – сигнала в любой момент времени t определим путем интегрирования частоты, выраженной через формулу (5.1):

где w дч = - максимальное отклонение частоты от значения w 0 , или девиация частоты при частотной модуляции.

Отношение m ч = w дч /W = k ч E 0 /W, (5.3)

являющееся девиацией фазы несущего колебания, называют индексом частотной модуляции.

С учетом (5.2) и (5.3) ЧМ – сигнал запишется в следующем виде:

На рис. 5.1 представлены временные диаграммы соответственно несущего колебания u н (t ) и модулирующего сигнала e (t ) с начальными фазами j 0 = q 0 = 90 o , и полученный в результате процесса частотной модуляции ЧМ – сигнал u чм (t ) . Нетрудно заметить, что по формуле ЧМ-сигнал напоминает сжатые и растянутые меха русской гармошки.

Фазовая модуляция. В ФМ – сигнале полная фаза несущего колебания изменяется пропорционально модулирующему напряжению

y (t ) = w 0 t + k ф e (t ), (5.5)

где k ф - размерный коэффициент пропорциональности, рад/В.

Рис. 5.1 Частотная однотональная модуляция:

а – несущее колебание; б – модулирующий сигнал; в – ЧМ – сигнал

При однотональной модуляции фаза несущего колебания:

y (t ) = w 0 t + k ф E 0 cosWt , (5.6)

Из (5.6) следует, что, как и в случае частотной модуляции, полная фаза несущего колебания изменяется по гармоническому закону. Максимальное отклонение фазы несущего колебания от начальной фазы характеризует индекс фазовой модуляции

m ф = k ф E 0 . (5.7)

Подставляя формулы (5.5) и (5.6) в (4.1), запишем ФМ - сигнал

Дифференцирование формулы (5.6) дает частоту ФМ – сигнала

w(t ) = w 0 - m ф W sinWt = w 0 - w дф sinWt , (5.9)

где w дф = m ф W = k ф E 0 W - максимальное отклонение частоты от значения несущей w 0 , т. е. девиация частоты при фазовой модуляции.

Выражения (5.4), (5.8) показывают, что при однотональной угловой модуляции нельзя определить, является ли сигнал частотно или фазо-модулированным. Различия между этими видами однотональной модуляции проявляется только при изменении амплитуды Е 0 или частоты W моду-лирующего сигнала e (t ).

В случае частотной модуляции девиации частоты w дч пропорциональна амплитуде Е 0 и не зависит от частоты W модулирующего сигнала e (t ) = E 0 cosWt . Индекс же модуляции m ч прямо пропорционален амплитуде Е 0 и обратно пропорционален частоте W модулирующего сигнала. При фазовой модуляции девиации частоты w дф изменяется пропорционально амплитуде Е 0 и частоте модулирующего сигнала. Индекс модуляции m ф пропорционален амплитуде Е 0 и нее зависит от частоты W модулирующего сигнала.

Спектр ЧМ – сигнала при однотональной модуляции. Используя тригонометрические преобразования, запишем соотношение (5.4) следующим образом:

= U н cos(m sinWt )cosw 0 t - U н sin(m sinWt )sinw 0 t . (5.10)

Проанализируем выражение (5.10) отдельно для малых (m << 1) и больших (m >1) индексов модуляции.

Спектр ЧМ – сигнала при m << 1. В этом случае имеют место приближенные равенства

cos(m sinWt ) » 1; sin(m sinWt ) » m sinWt . (5.11)

Подставив (5.11) в (5.10), получим

u ЧМ (t ) = U н cosw 0 t - U н m sinW sinw 0 t =

+ U н cosw 0 t + (mU н /2)cos(w 0 + W)t - (mU н /2) cos(w 0 - W)t . (5.12)

Рис.5.2. Диаграммы ЧМ – сигнала при m << 1:

а – спектральная; б - векторная

Сравнение соотношений (5.12) и (4.6) показывает, что спектр ЧМ – сигнала аналогичен спектру АМП – сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (w 0 + W) и (w 0 - W). Индекс модуляции m играет здесь ту же роль, что и коэффициент амплитудной модуляции М . Единственное и принципиальное отличие - знак минус перед нижней боковой составляющей в формуле для ЧМ – сигнала, который характеризирует поворот ее фазы на 180 0 , что аналитически приводит к превращению АМП – сигнала в ЧМ – сигнал.

На рис.5.2,а представлена спектральная диаграмма для ЧМ – сигнала при индексе модуляции m << 1. Отметим, что ширина спектра в данном случае равна 2W, как и при амплитудной модуляции.

На векторной диаграмме рис.5.2, б показано, как изменение фазы нижней боковой составляющей на 180 0 (вектор АД) влияет на вектор результирующего колебания ОВ. Направление вектора АД нижней боковой составляющей при АМ – сигнале обозначено штриховой линией. Изменение направления этого вектора на 180 0 не влияет на вектор модуляции АВ, который всегда перпендикулярен вектору несущей ОА. Вектор результирующего колебания ОВ изменяется как по фазе, так и по амплитуде, т.е. с течением времени «качается» вокруг центрального положения. Однако при m<< 1 изменения амплитуды настолько малы, что ими можно пренебречь и модуляцию рассматривать как чисто фазовую.

Теоретический спектр ЧМ – сигнала (аналогично и ФМ – сигнала) бесконечен по полосе частот, однако в реальных случаях он ограничен. Дело в том, что начиная с номера порядка n > m+1 , значения функций Бесселя становится весьма малыми. Поэтому считается, что практическая ширина спектра радиосигналов с угловой модуляцией

Dw ум = 2(m +1)W.

Рис. 5.3. Спектр ЧМ – сигнала.

ЧМ – и ФМ – сигналы, применяемые на практике, имеют индекс модуляции m >>1, поэтому

Dw ум = 2m W = 2w д.

Таким образом, полоса частот, занимаемая сигналами с однотональной частоты модуляцией, равна удвоенной величине девиации частоты и не зависит от частоты модуляции. Спектр сигналов с угловой модуляцией при негармоническом модулирующем сигнале определить достаточно трудно. Но он всегда сложнее, чем спектр АМ – сигнала при том же модулирующем сигнале. Ширина его спектра также значительно больше, чем при амплитудной модуляции.

Примерная структура спектра ЧМ– сигнала при индексе модуляции m =3 показана на рис. 5.3.

Следует отметить, что радиосигналы с частотой и фазовой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1.Поскольку при угловой модуляции амплитуда модулированных колебании не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитуды модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к искажению передаваемого сообщения.

2.Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает в этом случае при неизменной колебательной мощности.

Литература: 1, 2; 6[ 46-61].

Контрольные вопросы:

1.Как осуществляется частотная модуляция?

2.Покажите индекс частотной модуляции.

3.Что такое девиация частоты?

4. Покажите индекс фазавой модуляции.

5. Нарисуйте вид колебания однотональной частотной модуляции.

6. Как изменяется индекс модуляции с ростом частоты?

7. Покажите спектр частотной модуляции.

Другим распространенным типом модуляции, применяемым в радиосвя­зи, является частотная модуляция (ЧМ), при которой частота несущей изменяется в соответствии с модулирующим сигналом (рис. 15.1).


Рис. 15.1. Частотная модуляция.

Обратите внимание, что амплитуда несущей остается постоянной, а частота изменяется.

Девиация частоты

Девиация частоты есть степень изменения частоты несущей при измене­нии уровня сигнала на 1 В. Девиация частоты измеряется в килогер­цах на вольт (кГц/В). Предположим, например, что несущая с частотой 1000 кГц должна быть промодулирована сигналом в виде меандра с ам­плитудой 5 В (рис. 15.2). Предположим также, что девиация частоты равна 10 кГц/В. Тогда во временном интервале от А до В частота не­сущей увеличится на 5 · 10 = 50 кГц (произведение амплитуды сигнала на девиацию частоты) и станет равной 1000 кГц + 50 кГц = 1050 кГц. Во временном интервале от В до С частота несущей изменится на ту же величину, а именно на 5 · 10 = 50 кГц, но на этот раз в отрицательную сторону с уменьшением частоты несущей до 1000 – 50 = 950 кГц.


Рис. 15.2.

Максимальная девиация

Изменение частоты несущей при изменении уровня сигнала должно быть ограничено некоторой максимальной величиной, превышение которой не­допустимо. Эта величина называется максимальной девиацией. Напри­мер, при ЧМ-передачах радиостанции Би-би-си используется девиация частоты 15 кГц/В и максимальная девиация 75 кГц. Максимальная ве­личина модулирующего сигнала определяется максимальной допустимой девиацией.

Максимальная девиация ±75

Максимальный сигнал = -------------- = -- = ±5 В

Девиация частоты 15

или, другими словами, 5 В в положительную или отрицательную область.

Боковые частоты и ширина полосы

Если несущая промодулирована по частоте гармоническим сигналом, образуется неограниченное число боковых частот. Амплитуды боковых Компонент постепенно уменьшаются по мере отдаления частоты этих ком­понент от частоты несущей.

Таким образом, для размещения всех боковых частот ширина полосы частот ЧМ-системы должна быть бесконечной. На практике малые по амплитуде боковые компоненты ЧМ-сигнала могут быть отброшены без внесения каких-либо заметных искажений. Например, ЧМ-передачи ра­диостанции Би-би-си ведутся с использованием полосы частот шириной 250 кГц.

Сравнение AM - и ЧМ-систем модуляции

Амплитудная Частотная

модуляция модуляция

1. Амплитуда несущей Изменяется вместе Остается

С сигналом постоянной

2. Боковые частоты Две для каждой Бесконечное

Частоты в спектре число

Сигнала

3. Ширина занимаемой 9 кГц 250 кГц полосы частот

4. Диапазон частот ДВ, СВ. KB УКВ

Преимущества частотной модуляции

Радиовещание с использованием ЧМ имеет следующие преимущества по сравнению с АМ-передачей программ.

1. В системе с ЧМ обеспечивается лучшее качество звучания. Это свя­зано с большой шириной полосы частот ЧМ-сигнала, охватывающей гораздо большее число гармоник.

2. При ЧМ-передаче достигается очень низкий уровень шума. Шум - это нежелательные сигналы, которые появляются на выходе обычно в форме изменения амплитуды несущей. В ЧМ-системе эти сигналы легко устраняются путем двустороннего ограничения амплитуды не­сущей. Информация, которую несет изменяющаяся частота, при этом полностью сохраняется.

В этом видео рассказывается о частотной модуляции:

Системы с частотной модуляцией обладают высокой помехоустойчивостью, поэтому их применяют для высокочастотного радиовещания на ультразвуковых волнах, для передачи сигналов звукового сопровождения телевидения, в радиорелейных и спутниковых линиях связи, а также для передачи телеграфных и фототелеграфных сигналов.

Если модуляция производится одним синусоидальным тоном, то выражение для частотномодулированного колебания имеет вид

где – амплитуда высокочастотного колебания;

– значение высокой (несущей) частоты до модуляции;

– частоты модулирующего напряжения;

– индекс частотной модуляции, определяемый из выражения

, (2.5)

где – отклонение высокой частоты при модуляции – девиация частоты.

Мгновенное значение частоты частотномодулированного сигнала будет .

Девиация частоты при модуляции пропорциональна только амплитуде модулирующего напряжения и не зависит от его частоты:

На рисунке 2 приведен график частотномодулированного колебания, соответствующий выражению (2.4). Частота модулирующего колебания определяет скорость изменения мгновенного значения девиации , ( – максимальная девиация).

Рисунок 3 – График частотно-модулированного колебания

В практике радиоизмерений, особенно в условиях эксплуатации, определяется девиация частоты ; индекс частотной модуляции при модуляции одной частотой определяется по формуле (2.5). Для точных измерений частотно-модулированных колебаний при настройке передающих и калибровке измерительных устройств определяется индекс частотной модуляции , а по формуле (2.5) – девиация частоты .

Измерение девиации частоты

Наиболее просто девиацию частоты измерять методом частотного детектора. Сущность его состоит в том, что частотно-модулированные колебания преобразуются в амплитудно-модулированные, а затем детектируются амплитудным детектором, в результате чего получается напряжение, пропорциональное напряжению модулирующей частоты. Это напряжение измеряется пиковым вольтметром, включенным на выходе амплитудного детектора. Как следует из выражения (2.6), шкалу пикового вольтметра можно проградуировать непосредственно в единицах отклонения частоты – килогерцах. Частотно-модулированные колебания преобразуются в колебания низкой частоты частотным детектором (см. рисунок 4), характеристика которого имеет вид S-образной кривой. Детали частотного детектора, в особенности колебательные контуры, должны быть особо высокого качества, так как малейшее изменение их параметров во времени вызывает значительную погрешность измерений.

Рисунок 4 – Схема частотного детектора

Блок-схема прибора для измерения девиации методом частотного детектора приведена на рисунке 4. Прибор представляет собой, по существу, калиброванный высокочастотный приемник частотно-модулированных колебаний с измерительными приборами для непосредственного считывания нужных величин. Модулированный сигнал преобразуется в промежуточную частоту, усиливается, ограничивается и поступает на частотный детектор, выходное напряжение которого пропорционально девиации частоты; результат детектирования проходит через фильтр нижних частот, усиливается и измеряется пиковым вольтметром. Шкала последнего проградуирована в единицах девиации – килогерцах. При помощи внутреннего калибратора проверяются частотный детектор и вся измерительная часть прибора. Погрешность измерения составляет .

Рисунок 5 – Блок-схема измерителя девиации частоты

Задание: определить действительное значение девиации частоты, учитывая погрешность измерения и показания пикового вольтметра, шкала которого проградуирована в единицах девиации – килогерцах.

Например, на РРЛ с частотным уплотнением многоканальное сообщение передается с помощью частотной модуляции передатчика. Для осуществления соединения РРЛ необходимо чтобы девиация частоты была одинакова, т.е для различного числа каналов МККР указывает величину эффективной девиации частоты. При этом измерительный уровень и .

Обычно определяют верхний предел средней мощности многоканального сообщения и рассчитывают эффективную величину девиации частоты.

Таблица 9 – Эффективное значение девиации частоты на канал , кГц

Загрузка одного телефонного канала с уровнем создает эффективную девиацию частоты на один канал

Например, эффективная величина девиации частоты приходящаяся на один канал, при 240>N >100 .

Таблица 10

При сравнении измеренной величины с учетом погрешности с расчетной сделать вывод о соответствии рекомендациям МККР.

Другие величины, характеризующие ЧМ

  • Индекс частотной модуляции - отношение девиации частоты к частоте модулирующего сигнала

Метрологические аспекты

Измерения

  • Для измерения девиации частоты используются девиометры , существует также косвенный метод измерения - с помощью функций Бесселя , обеспечивающий высокую точность.
  • Эталонными мерами девиации частоты являются специальные поверочные установки - калибраторы измерителей девиации частоты (установка РЭЕДЧ-1).

Эталоны

  • Государственный специальный эталон единицы девиации частоты ГЭТ 166-2004 - находится во ВНИИФТРИ

Литература

Ссылки

См. также


Wikimedia Foundation . 2010 .

  • Царёв
  • Цвигун

Смотреть что такое "Девиация частоты" в других словарях:

    девиация частоты - 3.15 девиация частоты: Наибольшее отклонение частоты модулированного радиосигнала при частотной модуляции от значения его несущей частоты. Источник: РД 45.298 2002: Оборудование аналоговых транкинговых систем подвижной радиосвязи. Общие… …

    Девиация частоты - отклонение частоты колебаний от среднего значения. В частотной модуляции (См. Частотная модуляция) Д. ч. обычно называют максимальное отклонение частоты. От значения его существенно зависит состав и значения амплитуд составляющих спектра… … Большая советская энциклопедия

    Девиация частоты - 1. Наибольшее отклонение частоты модулированного сигнала от значения несущей частоты при частотной модуляции Употребляется в документе: ОСТ 45.159 2000 Отраслевая система обеспечения единства измерений. Термины и определения … Телекоммуникационный словарь

    девиация частоты (фазы) прибора СВЧ - девиация частоты (фазы) Δfдев (Δφдев) Наибольшее изменение рабочей частоты (фазы) генерируемых или усиливаемых колебаний прибора СВЧ при частотной (фазовой) модуляции. [ГОСТ 23769 79] Тематики приборы и устройства защитные СВЧ… …

    Девиация частоты (фазы) прибора СВЧ - 170. Девиация частоты (фазы) прибора СВЧ Девиация частоты (фазы) Frequency (phase) deviation Δfдев (Δφдев) Наибольшее изменение рабочей частоты (фазы) генерируемых или усиливаемых колебаний прибора СВЧ при частотной (фазовой) модуляции Источник … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вниз» - 31. Девиация частоты «вниз» Пиковое отклонение «вниз» закона модуляции при частотной модуляции. Примечание. Если fgв = fgн = fg как, например, при гармоническом законе модуляции, то величина fg называется девиацией частоты Источник … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вверх» - 30. Девиация частоты «вверх» Пиковое отклонение «вверх» закона модуляции при частотной модуляции где переменная составляющая закона модуляции при частотной модуляции; f(t) закон модуляции при частотной модуляции (мгновенная частота); … … Словарь-справочник терминов нормативно-технической документации

    Девиация частоты «вверх» - 1. Пиковое отклонение «вверх» закона модуляции при частотной модуляции Употребляется в документе: ГОСТ 16465 70 Сигналы радиотехнические измерительные. Термины и определения … Телекоммуникационный словарь

    Девиация частоты «вниз» - 1. Пиковое отклонение «вниз» закона модуляции при частотной модуляции Употребляется в документе: ГОСТ 16465 70 Сигналы радиотехнические измерительные. Термины и определения … Телекоммуникационный словарь

    абсолютная девиация частоты - (абсолютная) девиация частоты девиация частоты Наибольшее отклонение частоты модулированного сигнала от значения несущей частоты при частотной модуляции (ОСТ 45.159 2000.1 Термины и определения (Минсвязи России)).… … Справочник технического переводчика




Top