Генератор 12 вольт с самовозбуждением. Генератор с самовозбуждением. Генераторы со смешанным возбуждением

1. Железный сердечник ротора обладает некоторым остаточным магнетизмом, но его обычно недостаточно, чтобы в статарной обмотке начал генерироваться ток. Однако, даже если пропустить через обмотку возбуждения генератора ток сигнальной лампочки разряда аккумулятора мощностью всего лишь 2.2 Вт , то этого окажется достаточно для возбуждения требуемого магнитного поля.

2. Эта лампочка также сигнализирует о том, что на аккумулятор не поступает напряжение подзарядки. Она загорается при включении зажигания и горит до тех пор, пока не начнет вращаться генератор. При этом с обмоток статора через диоды пойдет ток на обмотку возбуждения ротора, разность напряжений между контактами лампочки пропадет и лампочка погаснет. Это произойдет в предположении, что на обмотку возбуждения подается со статора напряжение, примерно равное напряжению аккумулятора.

На рис. 3.15 показана принципиальная схема генератора с самовозбуждением. Она отличается по внешнему виду от схемы с внешним возбуждением наличием в ней девяти диодов.

3. В схемах автомобильного электрооборудования обычно параллельно сигнальной лампочке устанавливают еще и резистор с постоянным сопротивлением, так что ток не обмотку возбуждения при пуске двигателя будет поступать всегда, даже в случае, если лампочка перегорела.

4. При работе генератора весь необходимый ток возбуждения снимается с его статарной обмотки отсюда и происходит термин «самовозбуждение» . Ток аккумулятора используется только для того, чтобы началась генерация.

Читайте также:

  • С приходом осенне-зимних холодов начинает давать о себе знать аккумулятор. А все из-за того, что…
  • В среднем срок эксплуатации аккумуляторной батареи составляет пять лет. Длительность периода эксплуатации зависит от правильного…
  • Батарея это элемент питания, который нужен не только автомобильному транспорту, но и мотоциклу. Без тока…
  • Движение по дороге всего было достаточно опасным делом, ведь трафик обычно отличается большой плотностью. Водителю…
  • Подобное оборудование используется для того, чтобы обеспечить остановку транспортного средства по первому желанию водителя. Для…

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Электронные термометры получили широкое распространение в качестве измерителей температуры. Ознакомиться с контактными и бесконтактными цифровыми термометрами можно на сайте http://mera-tek.ru/termometry/termometry-elektronnye . Этими приборами в основном и обеспечивается измерение температуры на технологических установках благодаря высокой точности измерения и большой скорости регистрации.

В электронных потенциометрах, как показывающих, так и регистрирующих, применяются автоматическая стабилизация тока в цепи потенциометра и непрерывная компенсация термопары.

Соединение токопроводящих жил — часть технологического процесса соединения кабеля. Многопроволочные токопроводящие жилы с площадью сечения от 0,35 до 1,5 мм 2 соединяют пайкой после скрутки отдельных проволок (рис. 1). Если восстанавливают изоляционными трубками 3, то перед скруткой проволок их необходимо надеть на жилу и сдвинуть к срезу оболочки 4.

Рис. 1. Соединение жил скруткой: 1 — жила токопроводящая; 2 — изоляция жилы; 3 — трубка изоляционная; 4 — оболочка кабеля; 5 — луженые проволоки; 6 — паяная поверхность

Однопроволочные жилы соединяют внахлест, скрепляя перед пайкой двумя бандажами из двух-трех витков медной луженой проволоки диаметром 0,3 мм (рис. 2). Также можно использовать специальные клеммы wago 222 415 , которые сегодня стали очень популярны за счет простоты использования и надежности эксплуатации.

При монтаже электрических исполнительных механизмов корпус их необходимо заземлять проводом сечением не менее 4 мм 2 через винт заземления. Место присоединения заземляющего проводника тщательно зачищают, а после присоединения наносят на него слой консистентной смазки ЦИАТИМ-201 для предохранения от коррозии. По окончании монтажа с помощью проверяют значение , которое должно быть не менее 20 МОм, и заземляющего устройства, которое не должно превышать 10 Ом.

Рис. 1. Схема электрических соединений блока датчиков однооборотного электрического механизма. А — блок усилителя БУ-2, Б — блок магнитного датчика, В — электрический исполнительный механизм


Монтаж блока датчиков однооборотных электрических исполнительных механизмов производится по схеме электрических соединений, показанной на рис. 1, проводом сечением не менее 0,75 мм 2 . Перед установкой датчика необходимо проверить его работоспособность по схеме, изображенной на рис. 2.

21.03.2019

Типы газоанализаторов

Используя газ в печах, различных устройствах и установках, необходимо контролировать процесс его сжигания, чтобы обеспечить безопасную эксплуатацию и эффективную работу оборудования. При этом качественный и количественный состав газовой среды определяется с помощью приборов, называемых

Генераторный режим работы асинхронной машины рассматривался в § 24-5. При этом было выяснено, что асинхронный генератор потребляет реактивный намагничивающий ток для создания магнитного потока й поэтому должен работать параллельно с сетью переменного тока, к которой присоединены другие машины или установки (например, синхронные генераторы), способные снабжать

Рис. 29-6. Схема асинхронного генератора АГ с местной нагрузкой R и конденсаторной батареей С {а) и векторная диаграмма (б)

реактивным током асинхронные генераторы идругих потребителей. Наряду с этим асинхронный генератор может работать также л режиме самовозбуждения на отдельную сеть, получая реактивный ток возбуждения от конденсаторов, прнключаемых к зажимам асинхронного генератора.

"Для выяснения некоторых положений рассмотрим схему рис. 29-6, на которой изображен асинхронный генератор АГ, работающий параллельно с сетью и потребляющий из нее реактивный (индуктивный) ток l L = / . Этот ток создает в генераторе магнитное поле, в то время как активный ток 1 а, вырабатываемый генератором АГ, полностью потребляется местным Потребителем R. Приключим теперь к зажимам, генератора конденсаторы С такой емкости, чтобы потребляемый

Рис 29-7. Схема замещения самоВоз-буждающегося асинхронного генератора с нагрузкой Z at и емкостным сопротивлением конденсаторной батареи х с

ими из сети емкостный ток / с по величине был равен току I L , Очевидно, что при этом потребляемый из сети ток

Рубильник Р можно поэтому отключить, и асинхронный генератор АГ будет работать на изолированную местную сеть с приемниками RnC. Так как при этом, с одной стороны, генератор продолжает потреблять ток I L = 1 ш, а с другой стороны, конденсаторы продолжают потреблять ток / с = l h , то можно сделать следующие выводы:

1) источниками реактивного намагничивающего тока / м = /j. для генератора теперь являются конденсаторы;

2) утверждения «конденсатор потребляет из сети (или от асинхронного генератора) емкостный ток» и «конденсатор отдает в сеть (яля асинхронному генератору) индуктнвйый ток» равноценны; 3) равноценны также утверждения «асинхронная машина потребляет из сети индуктивный ток» и «асинхронная машина отдает в сеть емкостный ток».

В практике энергетических систем термины «реактивный ток» и «реактивная мощность» принято связывать с отстающим (индуктивным) током. При этом говорят, что конденсаторы отдают в сеть реактивный ток и, реактивную мощность и являются гейераторами реактивной мощности.

Из «казааиого следует, что при чисто активной нагрузке асинхронного генератора мощность конденсаторов должна равняться реактивной (намагничивающей) мощности генератора. Если же нагрузка будет иметь смешанный активно-индуктивный характер, то мощность конденсаторной батареи необходимо соответственно увеличить, чтобы она покрывала также реактивную мощность нагрузки. При смешай-ной активно-емкостной нагрузке требуется конденсаторная батарея меньшей мощности, а при определенных условиях эта батарея становится излишней.

Схема замещениа-асинхронного генератора с самовозбуждением при помощи конденсаторов и с нагрузкой Z ST изображена на рис. 29-7. На основании этой схемы могут быть найдеды все соотношения и величины, характеризующие режим работы генератора. В частности, на основе баланса реактивных мощностей с учетом потерь реактивной мощности в сопротивлениях х Л, x" oi и х ы мождо определить необходимую мощность « необходимую емкость конденсаторов. Векторная диаграмма самого асинхронного генератора с самовозбуждением имеет обычный вид и не зависит от того, откуда генератор потребляет необходимую реактивную мощность.

Рис. 29-8. К выяснению условий самовозбуждения асинхронного генератора

Выяснив в общих чертах работу асинхронного генератора с самовозбуждением в установившемся режиме, рассмотрим процесс его самовозбуждения на холостом ходу (рис. 29-8), пренебрегая активными сопротивлениями.

Ввиду наличия потока остаточного намагничивания ротора асинхронной машины, при вращении ротора в обмотке статора индуктируется некоторая э д. с. £ост (рис. 29-8). Эта э. д. с. вызывает в конденсаторах ток 1" с, который, протекая по обмотке статора машины, усиливает его магнитный поток. В результате индуктируемая э. д. с. и ток конденсатора увеличиваются и т. д.

На рис. 29-8 зависимость индуктируемой в обмотке статора генератора э. д.с. £i от намагничивающего тока в этой обмотке / м или от тока конденсатора / с = / м изображена в виде кривой холостого хода или кривой намагничивания (ж О 1 + + х м)1 с - Прямая U = х с 1 с определяет зависимость напряжения конденсатора от его тока. Процесс самовозбуждения на рис. 29-8 условно изображен ступенчатой линией. Э. д. с. остаточного намагничивания вызывает в конденсаторе ток

Очевидно, что процесс самовозбуждения асинхронного генератора во многом аналогичен процессу самовозбуждения генератора постоянного тока (см. § 9-4).

Выше предполагалось, что первоначальный толчок тока статора при самовозбуждении возникает в результате действия потока остаточного намагничивания. Вместе с тем роль первоначального толчка может сыграть также ток разряда предварительно заряженной конденсаторной батареи, наводка тока внешним магнитным полем и флуктуация электронов в цепи обмотки статора. Последние две причины на практике часто оказываются недостаточно сильными для развития самовозбуждения.

Мощность конденсаторной батареи самовозбуждающегося асинхронного генератора достаточно велика (до 70-100% от номинальной мощности генератора), что делает установку дорогой. В связи с этим такие генераторы находят в настоящее время весьма ограниченное применение. Иногда явление самовозбуждения асинхронной машины с подключенными к ней конденсаторами используется для торможения асинхронных двигателей после отключения их от сети. Торможение при этом происходит за счет потерь, возникающих в самовозбужден-ной машине и приключенных к ней сопротивлениях.

Самовозбуждение асинхронной машины возможно также при включении конденсаторов во вторичную цепь, однако этот случай ввиду малой частоты в цепи ротора малоэкономичен.

§ 29-3. Асинхронные машины с массивным ротором

Ротор асинхронной машины можно изготовить из массивной стальной поковки и без пазов. В этом случае роль обмотки ротора играет сам массивный ротор, в котором вращающееся магнитное поле будет индуктировать токи.

Массивный ротор имеет большое преимущество в прочности. В связи с этим асинхронные двигатели на высокие скорости вращения (10 000-100 000 об/мин)

строятся с массивным ротором. Такие двигатели применяются в различных установках специального характера, в частности в гироскопических навигационных устройствах, и питаются током повышенной частоты (400-1000 гц).

Активное г 2 и индуктивное х л сопротивления массивного ротора ввиду сильно выраженного поверхностного эффекта значительно зависят от скольжения. Так, в случае / = 50 гц при пуске (s = 1) эквивалентная глубина проникновения токов в роторе составляет только около Змм, приs= 0,02 - около 20мм, npns = = 0,001 - около 100 мм. Поэтому при пуске сопротивление г 2 весьма велико и х л мало, а с уменьшением скольжения сопротивление г 2 уменьшается и х а2 увеличивается. Вследствие подобного изменения параметров геометрическое место токов машины с массивным ротором имеет вид, изображенный на рис. 29-9 сплошной линией. Для сравнения там же

штриховой линией показана круго- fy^$=/

вая диаграмма асинхронного двигателя с постоянными- параметрами.

В результате сильного проявления поверхностного эффекта пусковой момент двигателя с массивным ротором достаточно велик (М а /М я = 1,5-V- 2,0). Однако двигатели малой и средней мощности с массивными роторами при /= 50гц имеют низкие к. п. д. и коэффициент мощности, так как при Рис. 29-9. Геометрическое место токов скольжении s = 0,02 -з- 0,05 глу- асинхронной машины с массивным ро-бина проникновения тока и потокатором

в сталь ротора мала, активное и

магнитное сопротивления ротора магнитному потоку велики, вследствие чего двигатель имеет большое номинальное скольжение и большой намагничивающий ток. С увеличением геометрических размеров машины, а также при увеличении номинальной скорости вращения рабочие характеристики двигателя улучшаются. Так, асинхронный двигатель с массивным ротором на / = 50 гц и Р я = = 20 000 -з- 50 000 кет имел бы номинальное скольжение значительно менее 1%. В двигателях относительно небольшой мощности на высокие скорости вращения для улучшения рабочих характеристик иногда внешнюю поверхность массивного стального ротора покрывают медью. С этой же целью применяются медные кольца, прикрепленные к торцевым поверхностям массивного ротора. Роль этих колец аналогична торцовым короткозамыкающим кольцам беличьей клетки, и активное сопротивление ротора с такими кольцами уменьшается. Иногда на цилиндрической поверхности ротора выполняют также пазы, но без укладки в них обмотки. При этом площадь внешней рабочей поверхности ^ротора, нагруженной токами, увеличивается, что приводит к уменьшению активного сопротивления ротора.

§ 29-4. Линейные и дуговые асинхронные машины

Если представить себе, что обычный круглый статор асинхронного двигателя разрезан по осевой плоскости и выпрямлен в плоскость или разогнут по дуге большего радиуса, чем радиус исходного круглого статора, то получится статор линейной (рис. 29-10, о) или дуговой (рис. 29-10, б) асинхронной машины. Трехфазная обмотка такого статора создает в воздушном зазоре в пределах сердечника статора соответственно бегущее или вращающееся магнитное поле.

Движущаяся часть линейной машины называется бегуном, а движущаяся часть дуговой машины - ротором. Бегун и ротор могут иметь конструкцию, свойственную роторам нормальных короткозамкнутых асинхронных машин, т. е. иметь сердечники из листовой электротехнической стали и обмотку

Рис. 29-9. Геометрическое место токов асинхронной машины с массивным ротором

типа беличьей клетки, расположенную в пазах сердечника бегуна и ротора. Они могут быть изготовлены также массивными - из стали или чугуна, и в этом случае роль вторичной обмотки выполняет само тело бегуна или ротора." Линейную асинхронную машину можно выполнить также в виде двух статоров, обращенных друг к другу, и бегуном при этом служит проводящее тело, расположенное в зазоре между сердечниками статоров. Проводящее вторичное тело в виде шины может быть также неподвижным, а „статор" - находиться на движущемся экипаже. Такие устройства перспективны для высокоскоростного пассажирского транспорта.

Принцип действия рассматриваемых машин одинаков с принципом действия нормальных асинхронных машин: бегущее или вращающееся поле статора индуктирует в обмотке бегуна или ротора токи, в результате взаимодействия которых с магнитным полем возникают электромагнитные силы, действующие на бегун и ротор. В установившемся режиме скольжение бегуна или ротора относительно магнитного поля обычно невелико.

Особенностью дуговой машины является то, что ее скорость вращения не связана так жестко с числом пар полюсов р и частотой fi, как в нормальной асинхронной машине. Действительно, пусть статор.машины (рис. 29-10, 6) имеет р пар полюсов" и занимает дугу с центральным углом а,-За один период тока вращающееся поле перемещается на 2т или на угол ajp, а в тече» ние одной секунды поле совершает

оборотов. Выбирая различные а, полу чаем различные скорости вращения. Щщ а = 2я имеем нормальную асинхронную машину с

«i=/i/P. об/сек.

P#c. 29-10, Линейная (а) я дуговая (б) асинхронные машины

Линейные асинхронные машины можно использовать для получения возвратно-поступательного движения. При этом производится периодическое пере* ключеиие обмотки статора (изменение чередования фаз) и. машина работает в циклическом режиме ускорения, движения и торможения. Такой режим в энергети; ческом отношении невыгоден, так как в течение каждого цикла работы при уско^ рении и торможении бегуна бесполезно теряется относительно большое количество-энергии в виде тепла, выделяемого в обмотках. Количество теряемой энергии тем больше, чем больше масса бегуна и его максимальная скорость. В связи с этим Явигатели возвратно-поступатального движения не получили заметного распространения. Применение линейных и дуговых асинхронных машин и родственных им магнитогидродинамическ"их машин (см, §29-5) в качестве электрических машин специального назначения расширяется.

В линейных и дуговых асинхронных машинах возникают краевые эффекты, вызванные "уем. что их статоры не" замкнуты в кольцо и имеют конечную длину. Вследствие этого энергетические показатели линейных и дуговых машин хуже» чем у нормальных асинхронных машин.

§ 29-5. Магнитогидродинамические машины переменного тока

Одной из разновидностей магнитогидродинамических машин переменного тока являются индукционные насосы для жидких металлов, которые подразделяются на линейные и винтовые .

Линейные индукционные насосы родственны линейным асинхронным машинам (см. § 29-4) и делятся на плоские и цилиндрические.

Плоские насосы (рис. 29-11) имеют обычно два индуктора, каждый из которых состоит из сердечник-а 1 и многофазной (обычно трехфазной) обмотки 2. Между индукторами находится плоский канал прямоугольного сеченияЗ с жидким металлом. Стенки канала в зависимости от свойств жидкого металла могут быть как металлическими, так и керамическими. Между стенками канала и индукторами в большинстве случаев имеется слой тепловой изоляции. Бегущее магнитное

Рис. 29-Я. Устройство плоского линейного индукционного насоса для жидких металлов

поле индукторов наводит в жидком металле токи, и вследствие взаимодействия этих токов с магнитным полем возникают электромагнитные силы, действующие на частицы жидкого металла. В результате развивается напор, и жидкий металл прихоцвт в движение по направлению движения поля с некоторым скольжением относительно его.

Цилиндрические насосы имеют канал кольцевого сечения, внутри которого расположен сердечник без обмотки, а снаружи - с обмоткой. Обмотка создает магнитное поле, бегущее вдоль оси канала.

Представление о винтов ом индукционном насосе можно получить, если предположить, что ротор асинхронного двигателя заторможен, зубцы ротора вместе с обмоткой срезаны и в зазоре, образовавшемся между внешним и внутренним сердечниками, навит винтовой канал.

Индукционные насосы находят применение в исследовательских, транспортных и промышленных установках с ядерными реакторами на быстрых нейтронах, в которых для отвода тевда используются жидкометаллические теплоносители (натрий, кадий, их сплавы и др.). Создаются также разные установки для металлургии и Литейного производства. Все виды индукционных насосов обратимы, и насосы могут работать в режиме асинхронного генератора, если по их каналам за счет внешнего источника прокачивать жидкий металл со скоростью выше скорости движения поля. Магнитогидродинамические генераторы с жидкими металлами, а также с парами жидких металлов имеют перспективы практического применения в разных энергетических установках, в том числе с ядерными реакторами . Предложены различные конструктивные разновидности подобных генераторов. Однако на пути их создания имеются различные трудности, из которых можно отметить проблему разгона жидких металлов за счет содержащейся в них тепловой энергии.

§ 29-6. Асинхронный преобразователь частоты

Асинхронный преобразователь частоты (рис. 29-12) состоит из трехфазной асинхронной машины AM с фазным ротором и соединенного с ней приводного двигателя Д. Одна из обмоток асинхронной машины, например обмотка статора, приключается к первичной сети с частотой f lt а вторичная обмотка питает вторичную сеть током частоты скольжения f 2 = sfj.

Асинхронная машина AM работает либо в тормозном, режиме противовклю-чения, когда s > 1 и f 2 > fi. либо в режиме двигателя, когда s < 1 и f 2 > f v В двигательном режиме ротор AM вращается в направлении вращения поля, а в тормозном - против направления вращения поля. Генераторный режим работы AM в преобразователях частоты обычно не используется.

рели пренебречь потерями, то первичная мощность AM

Pi = Pbh>

а вторичная мощность, или мощность скольжения,

Механическая мощность, развиваемая двигателем Д, Pux = P2-Pi = (s-\)P 1 .

При s > 1, когда fi>f\, приводной двигатель Д работает в режиме двигателя и Р т > 0. При s > 1 двигатель Д работает в действительности в режиме генератора и Р мх < 0.

Приводным двигателем Д обычно служит асинхронный или синхронный двигатель. Если величину вторичной частоты необходимо регулировать, то возбуждение первичной обмотки AM частотой производится от вспомогательной синхронной или коллекторной машины с регулируемой частотой. Для этой же цели в качестве двигателя Д можно, использовать машину постоянного тока и регулировать скорость ее вращения. Если / а > f u то Р 2 > Pi, и для облегчения работы контактных колец и щеток в качестве первичной обмотки с током частоты ^ используется обмотка ротора. В простейшем случае, когда регулирования величины частоты f 2 не требуется, приводной синхронный или асинхронный двигатель Д и первичную обмотку AM можно питать от общей сети с промышленной частотой Д. При этом скорость вращения приводного двигателя и всего агрегата, если в случае использования асинхронного приводного двигателя, пренебречь его скольжением, равна

Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.
Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением. На рис. 10 изображен генератор с параллельным возбуждением.

Обмотка возбуждения подключена параллельно якорной обмотке. В цепь возбуждения включен реостат R в. Генератор работает в режиме холостого хода.
Чтобы генератор самовозбудился, необходимо выполнение определенных условий.
Первым из этих условий является наличие остаточного магнитного потока между полюсами. При вращении якоря остаточный магнитный поток индуцирует в якорной обмотке небольшую остаточную ЭДС.
Рис. 10
Вторым условием является согласное включение обмотки возбуждения. Обмотки возбуждения и якоря должны быть соединены таким образом, чтобы ЭДС якоря создавала ток, усиливающий остаточный магнитный поток. Усиление магнитного потока приведет к увеличению ЭДС. Машина самовозбуждается и начинает устойчиво работать с каким-то током возбуждения I в = const и ЭДС Е = const, зависящими от сопротивления R в в цепи возбуждения.
Третьим условием является то, что сопротивление цепи возбуждения при данной частоте вращения должно быть меньше критического. Изобразим на рис. 11 характеристику холостого хода генератора E = f (I в) (кривая 1) и вольт - амперную характеристику сопротивления цепи возбуждения U в = R в ·I в, где U в - падение напряжения в цепи возбуждения. Эта характеристика представляет собой прямую линию 2, наклоненную к оси абсцисс под углом γ (tg γ ~ R в).

Ток обмотки возбуждения увеличивает магнитный поток полюсов при согласном включении обмотки возбуждения. ЭДС, индуцированная в якоре, возрастает, что приводит к дальнейшему увеличению тока обмотки возбуждения, магнитного потока и ЭДС. Рост ЭДС от тока возбуждения замедляется при насыщении магнитной цепи машины.
Рис. 11

Падение напряжения в цепи возбуждения пропорционально росту тока. В точке пересечения характеристики холостого хода машины 1 с прямой 2 процесс самовозбуждения заканчивается. Машина работает в устойчивом режиме.
Если увеличим сопротивление цепи обмотки возбуждения, угол наклона прямой 2 к оси тока возрастает. Точка пересечения прямой с характеристикой холостого хода смещается к началу координат. При некотором значении сопротивления цепи возбуждения R кр, когда
γ = γ кр, самовозбуждение становится невозможным. При критическом сопротивлении вольт - амперная характеристика цепи возбуждения становится касательной к прямолинейной части характеристики холостого хода, а в якоре появляется небольшая ЭДС.

Условия самовозбуждения такого генератора следующие:

Первое условие- заключается в том, чтобы у такого генератора существовал остаточный магнитный поток, который индуцирует первоначальную ЭДС в обмотке якоря

Такой магнитный поток обычно существует в машине вследствие остаточного намагничивания полюсов.

Второе условие- заключается в том, что, ког­да по обмотке возбуждения начинает протекать ток (под дей­ствием остаточной ЭДС), магнитодвижущая сила должна быть направлена согласно с Fост . Тогда под воздействием результирующей МДС, равной у генератора возрастает ЭДС . Если МДС и направлены встречно, то машина размагничивается и процесс самовозбуждения не произойдет. В этом случае необходимо изменить направление протекания тока в обметке возбуждения, изменив полярность напряжения, прило­женного к ней.

Третье условие- заключается в том, чтобы со­противление цепи обмотки возбуждения было меньше некоторого значения, называемого критическим.

Принципиальная электрическая схема генератора с самовоз­буждением приведена на рис. 1.3. Генераторы данного типа имеют две обмотки возбуждения: параллельную и последовательную.

Рис. 1.3. Принципиальная электрическая схема генератора

У генераторов параллельного возбуждения цепь обмотки возбуждения подключается параллельно якорю. Ток возбуждения может быть определён:

где - сопротивление обмотки возбуждения.

Характеристика холостого хода генератора параллельного возбуждения аналогична такой же характеристике генератора не­зависимого возбуждения.

Нагрузочная характеристика генератора параллельного воз­буждения будет располагаться ниже, чем соответствующая харак­теристика генератора независимого возбуждения из-за наличия явления саморазмагничивания.

Внешней характеристикой генератора параллельного возбуж­дения называется зависимость при и . В отличие от генераторов с независимым возбужден­ием, у которых при снятии внешней характеристики ток возбужде­ния , у генераторов параллельного возбуждения - является переменной величиной, зависящей от тока нагрузки . Это связано с тем, что при изменении изменяется напряжение на зажимах якоря генератора, к которому подключена обмотка возбуждения.

У генераторов параллельного возбуждения с ростом тока на­грузки напряжение генератора уменьшается значительнее, чем у генераторов независимого возбуждения. Это связано с тем, что помимо двух причин, вызывающих понижение напряжения U с рос­том тока нагрузки (падение напряжения в якоре и размагничивающего действия реакции якоря) существует ещё и третья причина: яв­ление саморазмагничивания. Это явление заключается в том, что с возрастанием тока нагрузки уменьшается ток возбуждения за счет понижения напряжения U из-за влияния первых двух причин.

Генератор параллельного возбуждения может быть загружен до некоторого максимального значения тока якоря . При дальнейшем уменьшении сопротивления нагрузки ток нагрузки начи­нает резко уменьшаться, т.к. напряжение U падает быстрее, чем уменьшается сопротивление .Это связано с тем, что при больших токах нагрузки магнитная система переходит в ненасыщенное состояние вследствие саморазмагничивания и преобладающее значение имеют факторы, вызывающие падение напряжения на сопротивление якоря.

Ток якоря , достигнув значения начинает уменьшаться и при достигает значения тока ко­роткого замыкания генератора. Значение определяется только остаточной ЭДС и сопротивлением обмотки якоря (U=0 и I в =0 ).

Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и у генератора независимого возбуждения.

Генераторы смешанного возбуждения имеют две обмотки возбуждения: параллельную и последовательную (см. рис. 1.3). Как правило, параллельная обмотка возбуждения является основной, а последовательная – вспомогательной.

Обмотки возбуждения могут выключаться согласно, т.е. так, чтобы их магнитодвижущие силы складывались. Целью включения последовательной обмотки является компенсация падения напряжения на сопротивлении обмотки якоря и размагничивающего действия ре­акции якоря. За счет этой обмотки можно обеспечить автоматичес­кую стабилизацию напряжения генератора в определенном диапазоне

изменения нагрузки.

Это объясняется тем, что возрастающий ток нагрузки, протекая по последовательной обмотке возбуждения, вызывает увеличе­ние МДС этой обмотки. МДС последовательной обмотки, суммируясь с МДС параллельной обмотки, компенсирует уменьшение напряжения генератора.

Если последовательную обмотку включить встречно, так что­ бы МДС последовательной и параллельной обмоток были бы противоположно направлены, то внешняя характеристика такого генератора будет крутопадающей, поскольку рост тока нагрузки приводит к резкому уменьшению магнитного потока и ЭДС, наводимой в обмотке якоря.

Встречное включение последовательной и параллельной обмо­ток возбуждения используется в тех случаях, когда необходимо ограничить ток короткого замыкания, (сварочные генераторы и т.п.)




Top