Оперативная память. Intel будет встраивать контроллеры памяти в процессоры? Контроллер оперативной памяти

Памятью называется устройство, предназначенное для записи (хранения) и считывания информации.

В памяти контроллера хранятся:

  1. обслуживающие программы изготовителя,
  2. программы пользователя,
  3. конфигурация контроллера,
  4. блоки данных (значения переменных, таймеров, счетчиков, меркеров и др.).

Свойства памяти. Память характеризуется:

  1. Объем памяти (KВ, MВ или GВ).
  2. Скорость или время обращения к памяти.
  3. Энергозависимость. Поведение после отключения питания .

Рис. 3.4 Виды памяти (рисунок автора) .

Оперативная память (RAM - random access memory ).

Преимущество.

Является самой скоростной полупроводниковой электронной памятью, предназначенной для кратковременного хранения информации.

Недостаток.

Основным свойством этой памяти является энергозависимость, т.е.потеря данных после отключения электрического питания.

Для буферизации оперативной памяти в некоторых контроллерах используют аккумуляторы или электрические конденсаторы большой емкости, способные сохранять электрический заряд до нескольких дней.

Элементом оперативной памяти является электронный триггер (статическая память) или электрический конденсатор (динамическая память).

Рис. 3.5 Триггер - основной элемент RAM памяти (рисунок автора) .

Динамическая память требует циклической подзарядки конденсаторов, однако, она более дешевая по сравнению со статической памятью.

Матрица памяти представляет собой совокупность отдельных ячеек памяти – триггеров.

1 ряд матрицы содержит 8 ячеек памяти (8 Bit соответствует 1 Byte).

Каждая ячейка памяти имеет свой уникальный адрес (№ ряда «точка» № бита).

Ряды (биты) нумеруются справа налево от «0» до «7».

Строки (байты) нумеруются сверху вниз, начиная с «0».

Рис. 3.6 Матрица памяти (рисунок автора) .

Постоянная память (ROM - read only memory ) предназначена для продолжительного хранения информации. Основным отличием от оперативной памяти является то, что она способна сохранять информацию без источника питания , т.е. является энергонезависимой.

Эта память, в свою очередь, подразделяется на два типа: однократно (ROM) – и многократно перепрограммируемую (PROM) .

Перепрограммируемую память записывает пользователь с помощью программаторов. Для этого необходимо предварительно стереть содержимое памяти.

К старому типу перепрограммируемой памятиотноситься ЕPROM - память, стираемая ультрафиолетовыми лучами (EPROM - erasable programmable read only memory ).

Рис. 3.7 Память ЕPROM стирается ультрафиолетовыми лучами (источник http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Eprom.jpg) .

EEPROM (Electrically Erasable Programmable Read-Only Memory ) - электрически стираемое перепрограммируемое постоянное запоминающее устройство (ЭСППЗУ), один из видов энергонезависимой памяти (таких как PROM и EPROM ). Память такого типа может стираться и заполняться данными до миллиона раз.

На сегодняшний день классическая двух - транзисторная технология EEPROM практически полностью вытеснена NOR флэш-памятью. Однако название EEPROM прочно закрепилось за этим сегментом памяти независимо от технологии.

Рис. 3.8 Программирование флеш-памяти.

(источник http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Flash_programming_ru.svg ).

Флеш-память (flash memory ) - разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

Она может быть прочитана сколько угодно раз (в пределах срока хранения данных, типично - 10-100 лет), но писать в такую память можно лишь ограниченное число раз (максимально - около миллиона циклов). Не содержит подвижных частей, так что, в отличие от жестких дисков, более надёжна и компактна.

Благодаря своей компактности, дешевизне и низкому энергопотреблению флэш-память широко используется в цифровых портативных устройствах.

Условное деление областей памяти контроллера

Контроллер предоставляет следующие области памяти для хранения программы пользователя, данных и конфигурации.

Загрузочная память – это энергонезависимая память для программы пользователя,

данных и конфигурации. При загрузке проекта в контроллер он сначала сохраняется в загрузочной памяти. Эта память находится или на карте памяти (если она имеется), или непосредственно встроена. Информация энергонезависимой памяти сохраняется также и при отключении питания. Карта памяти поддерживает больший объем памяти, чем память, встроенная в контроллер.

Рабочая память – это энергозависимая память. Контроллер копирует некоторые элементы проекта из загрузочной памяти в рабочую память. Эта область памяти теряется при отключении питания, а при возвращении питания контроллер ее восстанавливает.

Сохраняемая память – это энергонезависимая память для ограниченного количества значений рабочей памяти. Эта память служит для выборочного сохранения важной информации пользователя при потере питания. При исчезновении питания у контроллера имеется достаточно времени для сохранения значений ограниченного числа адресов памяти. При включении питания эти сохраняемые значения восстанавливаются.


Восстановление информации

Рис. 3.9 Фазы восстановления информации (рисунок автора).

1. Информация о состоянии процесса управления, сохраненная в оперативную память, называется образом процесса управления POU . Т.е. все физические клеммы блока входа- выхода имеют виртуальных двойников (триггеры) в памяти контроллера. Обычно, для увеличения скорости обмена информацией, процессор обращается за информацией в оперативную память (а не к физическим клеммам входа/ выхода). Запись результатов обработки программы из образа процесса в клеммы выхода производится циклично.

2. После отключения питающего напряжения (напряжение падает ниже критического уровня) важнейшая информация сохраняется обратно из RAM в EEPROM. Области данных, подлежащих сохранению, определяет пользователь.

  • Что называется матрицей памяти?
  • Сколько ячеек памяти в одном ряду матрицы памяти?
  • Как нумеруются столбцы матрицы памяти (направление и диапазон)?
  • На какие основные типы подразделяется память контроллера (назовите только два типа)?
  • Какими преимуществами обладает один тип памяти перед другим (два ответа)?
  • На какие типы подразделяется оперативная память контроллера (2)?
  • На какие типы подразделяется постоянная память по кратности программирования (2)?
  • На какие типы подразделяется перепрограммируемая постоянная память по способу стирания (2)?
  • Откуда появляется информация в RAM при включение питания контроллера?
  • Пропадает ли вся информация из RAM при выключении питания (если не пропадает, то куда и какая информация сохраняется)?
  • Как называется информация о состоянии клемм входа/ выхода в оперативной памяти?
  • С каким блоком памяти, в основном, работает процессор?

  • Оперативная память является хранилищем динамической информации, переменных, и прочих данных которые используются, могут быть использованы в данный момент, или к которым просто может быть необходим быстрый доступ. Так же оперативная память является буферным хранилищем при передаче данных другим устройствам

    Что можно отнести к главным параметрам характеризующим модули ОЗУ и предопределяющими их производительность, в первую очередь это их объем, частота, тайминги (задержки), а так же сам тип памяти и используемый контроллер памяти.

    Типы памяти

    Начнём с типов памяти. Сегодня на рынке представлены три поколения памяти: SDRAM DDR, SDRAM DDR II, SDRAM DDR III, отличающимися друг от друга, по большему счёту только быстродействием. Так же существуют разные типы памяти, ориентированные в первую очередь на два типа платформ: домашние и серверные. Для домашних ПК используется обычная DIMM SDRAM DDR (II, III) память, для серверных же память типа registered, buffered и пришедшей им на смену full buffered (FBDIMM). Отличаются последние три от обычных модулей повышенной надёжностью целостности данных, а именно, наличием специальных буферов для хранения избыточной информации, системой коррекции ошибок, и контролем контрольных сумм, обеспечивается это использованием дополнительных чипов на планках памяти. Все эти меры призваны гарантировать повышенную надежность данных, но к сожалению дополнительная точка на пути данных отрицательно сказывается на быстродействии памяти.

    Объём памяти

    Объем памяти может очень сильно сказаться на производительности системы, особенно если ощущается сильный недостаток памяти в ПК, главным образом дело в том, что операционные системы, при нехватке физической памяти, создают виртуальную память, так называемый файл подкачки, это как бы оперативная память хранимая на жестком диске, но ввиду значительно более низкой скорости винчестеров по сравнению с RAM, быстродействие очень сильно падает.

    Тактовая частота RAM

    Как и во многих других устройствах ПК, в быстродействии ОЗУ играет роль ее тактовая частота. В случае с оперативной памятью, тактовая частота - основной показатель быстродействия модуля памяти. Предшествующая памяти DDR - SDR, работала на одинаковой частоте с системной шиной, и за один такт шины FSB выполнялся, один такт памяти, в памяти DDR (Double Data Rate), за один такт системной шины выполняется два такта памяти, что позволяет ей работать на удвоенной частоте.

    Тайминги

    Ещё одним немаловажным показателем быстродействия памяти являются тайминги, задержки, в тактах, от подачи команды, до её выполнения.

    В памяти SDRAM для работы с памятью необходимо сначала выбрать чип, с которым будут производиться действия. Делается это командой CS # (Chip Select). Затем выбирается банк и строка. Перед началом работы с любой строкой необходимо её активация. Делается это командой выбора строки RAS # (при выборе строки она активируется). Затем (при операции линейного чтения) выбирается строка командой CAS # (эта же команда инициирует чтение). Затем считываются данные и закрывается строка, совершив предварительный заряд (precharge) банка.

    Обычно в спецификации к памяти есть надписи вида 3-4-4-8 или 5-5-5-15, это сокращённая запись (так называемая схема таймингов) основных таймингов памяти. Эта схема включает в себя задержки CL - Trcd - Trp - Tras соответственно. А теперь подробнее о каждой задержке.

    CL, Cas Latency - минимальное время между подачей команды на чтение (CAS) и началом передачи данных (задержка чтения).

    Trcd, RAS to CAS delay - время, необходимое для активизации строки банка, или минимальное время между подачей сигнала на выбор строки (RAS #) и сигнала на выбор столбца (CAS #).

    Trp, Row Precharge - время, необходимое для предварительного заряда банка (precharge). Иными словами, минимальное время закрытия строки, после чего можно активировать новую строку банка.

    Контроллеры памяти

    Теперь о контроллере памяти. Контроллер памяти установлен не на чипах памяти и даже не на самой планке, тогда почему она рассматривается здесь? Потому что контроллеры памяти располагаются в разных устройствах ПК, их можно найти как на материнской плате, где они изначально и “обитали", так и на процессоре, куда они “переехали” сравнительно недавно. Встроенные в процессор контроллеры памяти используются в ЦПУ компании AMD достаточно давно, а в процессорах от Intel, совсем недавно, с появлением архитектуры Nehalem (процессоры Core i7) и сокета Socket 1366, до этого для процессоров в исполнении socket 775 использовался встроенный в северный мост контроллер памяти. Контроллер памяти не только определяют максимальную частоту и тип памяти, но так же и количество одновременно используемых планок. Ранее использовался один контроллер памяти, позволяющий одновременно работать только с одним модулем памяти, затем компанией nVidia была внедрена идея использования двухканального контроллера памяти, который был способен работать с двумя модулями одновременно, сегодня же в новых процессорах Core i7 используются трёхканальные контроллеры памяти. Хотя работа в таком режиме и требует некоторых особенностей; в слотах разных контроллеров должны быть вставлены если не идентичные, то очень похожие по характеристикам модули, в противном случае контроллер перейдет в одноканальный режим. Поэтому производители ОЗУ стали продавать память комплектами, по два или три модуля, с одинаковыми таймингами, частотами, и выпущенные в одной партии, что тоже кстати немаловажно для нормальной работы.

    Контроллер памяти

    Контроллер памяти - цифровая схема, управляющая потоком данных к и от оперативной памяти . Может представлять собой отдельную микросхему или быть интегрирована в более сложную микросхему, например, в северный мост , микропроцессор или систему на кристалле .

    Компьютеры, использующие микропроцессоры Intel традиционно имели контроллер памяти, встроенный в чипсет (северный мост), но многие современные процессоры, такие как DEC /Compaq Alpha 21364, AMD Athlon 64 и Opteron , IBM POWER5 , Sun Microsystems UltraSPARC T1 и процессоры Intel Core i7 имеют интегрированный контроллер памяти, расположенный на том же кристалле, для уменьшения задержки доступа в память. Хотя интеграция увеличивает производительность системы, происходит привязка микропроцессора к какому-то одному типу памяти, не позволяющая сочетать процессоры и память разных поколений. Для использования новых типов памяти требуется выпуск новых процессоров и изменение их разъема (например, после появления DDR2 SDRAM , AMD выпустила процессоры Athlon 64, использовавшие новый сокет Socket AM2).

    Интеграция контроллера памяти с процессором не является новой технологией, так, еще в 1990х DEC Alpha 21066 и HP PA-7300LC использовали встроенные контроллеры для снижения стоимости системы.

    Задачи

    Контроллер памяти содержит логические цепи, необходимые для проведения операций чтения и записи в DRAM , а также для обновления хранимых в DRAM данных. Без периодических обновлений чипы памяти DRAM теряют информацию, так как разряжаются токами утечки конденсаторы , хранящие биты. Типичное время надежного хранения информации составляет доли секунды, но не менее 64 миллисекунд согласно стандартам JEDEC. На более длительных периодах времени информация сохраняется лишь частично.

    Многоканальная память

    Полностью буферизованная память FB-DIMM

    Примечания


    Wikimedia Foundation . 2010 .

    • Контрнаступление Восточного фронта
    • Контроль (значения)

    Смотреть что такое "Контроллер памяти" в других словарях:

      Контроллер прерываний - (англ. Programmable Interrupt Controller, PIC) микросхема или встроенный блок процессора, отвечающий за возможность последовательной обработки запросов на прерывание от разных устройств. Содержание 1 PIC 2 APIC … Википедия

      контроллер доступа к памяти - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN memory access controllerMAC …

      Ячейка памяти ЭВМ - Запрос «ОЗУ» перенаправляется сюда. Cм. также другие значения. Простейшая схема взаимодействия оперативной памяти с ЦП Оперативная память (также оперативное запоминающее устройство, ОЗУ) в информатике память, часть системы памяти ЭВМ, в которую … Википедия

      Программируемый контроллер прерываний - Контроллер прерываний микросхема или встроенный блок процессора, отвечающий за возможность последовательной обработки запросов на прерывание от разных устройств. Английское название Programmable Interrupt Controller (PIC). Как правило… … Википедия

      Прямой доступ к памяти - (англ. Direct Memory Access, DMA) режим обмена данными между устройствами или же между устройством и основной памятью (RAM) без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не… … Википедия

      программируемый логический контроллер - ПЛК [Интент] контроллер Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления. [Сборник рекомендуемых терминов. Выпуск 107. Теория управления. Академия наук СССР. Комитет научно… … Справочник технического переводчика

      Функциональный контроллер - Схематическое расположение южного моста на системной плате Южный мост (от англ. Southbridge) (функциональный контроллер), также известен как контроллер концентратор ввода вывода от англ. I/O Controller Hub (ICH). Это микросхема, которая реализует … Википедия

      USB-контроллер - в составе платформы персонального компьютера обеспечивает коммуникацию с периферийными устройствами, подключенными к универсальной последовательной шине. USB контроллер является интеллектуальным устройством, способным взаимодействовать с… … Википедия

      Программируемый логический контроллер - Массово применяемый программируемый логический контроллер семейства SIMATIC S7 300 Программируемый логический контроллер (ПЛК) (англ. Programmable Logic Controller, PLC) или программируемый контроллер эле … Википедия

      профессиональный графический контроллер - Контроллер имеет 320 Кбайт памяти. Разрешение — 640х480 элементов изображения. Возможность отображать 256 цветов из палитры, содержащей более 16 млн. оттенков. Тематики информационные технологии в целом EN… … Справочник технического переводчика

    В наши дни в цивилизованном мире вы с трудом найдёте человека, который никогда бы не пользовался компьютером и не имел представление о том, что это такое. Поэтому, вместо того чтобы в очередной раз рассказывать обо всем известных частях этой сложной системы, мы расскажем вам о чём-то, что вы ещё не знаете. Мы обсудим и дадим небольшую характеристику контроллерам памяти, без которых работа компьютера была бы невозможна. Если вы хотите вникнуть в систему работы вашего персонального компьютера или ноутбука, то вы обязательно должны знать это. И так, давайте обсудим сегодня, что же такое контроллеры памяти.

    Задача, которая стоит перед контроллерами памяти компьютера является очень важной для работы компьютера. Контроллер памяти – это чип, который расположен на материнской плате или на центральном процессоре. Главной функцией, которую выполняет этот крохотный чип, является управление потоками данных, как входящих, так и исходящих. Второстепенной функцией контроллера памяти является увеличение потенциала и работоспособности системы, а так же равномерное и правильное размещение информации в памяти, которое доступно благодаря новым разработкам в области новых технологий.

    Размещение контроллера памяти в компьютере зависит от определённых моделей материнских плат и центральных процессоров. В некоторых компьютерах дизайнеры поместили этот чип на северном параллельном присоединении материнской платы, в то время как в других компьютерах они размещены на центральном процессоре типа «die». Те системы, которые рассчитаны на установку контроллера в материнской плате, имеют большое количество новых различных физических гнёзд. Оперативная память, которая используется в компьютерах такого типа, так же имеют новый современный дизайн.

    Главная цель использования контроллера памяти в компьютере заключается в том, чтобы система могла считывать и записывать изменения в оперативной памяти, а также обновлять её при каждой загрузке. Это происходит благодаря тому, что контроллер памяти посылает электрические заряды, которые в свою очередь, являются сигналами для выполнения тех или иных действий. Не углубляясь в техническую терминологию, мы можем утвердить тот факт, что контроллеры памяти являются одной из самых важных деталей в компьютере, позволяющих использовать оперативную память, и без которой его работа была бы невозможной.

    Контроллеры памяти бывают разных типов. Они различаются на:
    - контроллеры памяти с двойной скоростью передачи данных (DDR);
    - полностью буферизованные контроллеры памяти (FB);
    - двуканальные контроллеры (DC).

    Функции, которые могут выполнять контроллеры памяти разных типов, отличаются друг от друга. Например, контроллеры памяти с двойной скоростью передачи данных используются, чтобы передавать данные, в зависимости от увеличения или уменьшения темпа часов памяти. В то время как в двуканальной памяти используется два контроллера памяти параллельно друг от друга. Это позволяет компьютеру увеличить быстродействие системы, создавая больше каналов, но, несмотря на трудности, которые возникают в результате использования кучи проводов, данная система работает довольно эффективно. Однако возникают трудности при создании новых каналов, поэтому данный вид контроллера памяти не безупречен.

    Полностью буферизованные контроллеры памяти с другой стороны отличаются от остальных типов контроллеров памяти. В данной технологии используется серийные каналы передачи данных, которые нужны для связи с материнской платой и непохожие на остальные системы схемы оперативной памяти RAM. Преимущество данного типа контроллеров заключается в том, что полностью буферизованные контроллеры памяти уменьшают количество проводов, которые используются в материнской плате, и что позволяет уменьшить затраченное на выполнение задачи время.

    Как вы уже убедились, контроллеры памяти очень нужны для стабильной работы компьютера, и разные типы используются для разных целей. Цены на линейки памяти варьируются от очень высоких до очень низких, что зависит от типа и функций, которые выполняет тот или иной контроллер памяти.

    В первый месяц осени мы активно разбираем вопросы выбора оперативной памяти для нового персонального компьютера. Так как все современные системы поддерживают исключительно DDR3 тип памяти, именно о ней мы и ведем речь в статьях. В предыдущих статьях мы разобрали вопросы выбора планок оперативной памяти и ее типов, в отдельной статье мы остановились на вопросах выбора оптимального объема памяти для персонального компьютера. В данной завершающей обзорной статье мы хотели бы остановиться на вопросах выбора оперативной памяти применительно к процессорным платформам, существующим на рынках.
    Рассмотрение сокетных платформ следует начать с того, что каждый процессорный сокет рассчитан на определенный тип процессоров, а для материнских плат выпускаются собственные чипы. Контроллер оперативной памяти встроен в современные процессоры, поэтому можно смело заявлять, что тип рекомендуемой памяти всецело зависит от центрального процессора, а тип примененного процессора от выбранного сокета и платформы. Начнем рассмотрение с популярных сокетных платформ компании AMD.

    Одной из популярных и одновременно огорчивших пользователей оказался сокет AMD Socket FM1 . Данный сокет предназначен для использования процессоров AMD Llano. Данные процессоры имеют интегрированный контроллер оперативной памяти и неплохое графическое ядро. Максимальной официально поддерживаемой рабочей частотой планок оперативной памяти для данного сокета является частота 1866 Мгц. Поэтому мы рекомендуем приобретать именно данные планки оперативной памяти, так как они достаточно доступные на сегодняшний день. Следует отдельно выделить, что контроллер процессоров формата FM1 обладает способностью показывать отличный разгонный потенциал памяти, поэтому имеет смысл присмотреться к хорошо разгоняемым модулям, если вы планируете разгон на базе данной платфомы.

    Картинка кликабельна --


    Буквально через две недели официально должны будут представлены новые процессоры на базе платформы Socket FM2 для процессоров AMD Trinity. Компания AMD, которая славилась преемственностью платформ "кинула" покупателей платформы FM1 и они теперь не смогут установить в свою систему процессоры нового поколения.

    Новые процессоры AMD Trinity основаны на архитектуре Piledriver, то есть вычислительные ядра данных процессоров должны будут работать быстрее, чем у AMD Llano. Сообщается об обновлении интегрированной графики в процессорах. В частности, наиболее быстрым графическим блоком будет AMD Radeon HD 7660D. Следует отметить, что архитектура данных ядер не аналогична архитектуре дискретных видеокарт AMD Radeon HD 7000, к примеру, ядрам Tahiti, поэтому возлагать особых надежд на красивые цифры не следует.

    Существенным обнадеживающим фактом может считаться то, что AMD обнадежила пользователей долгим существованием сокета FM2, поэтому врятли покупателей данной платформы постигнет учесть владельцев Socket FM1 уже через год после анонса.

    По предварительным данным, контроллер памяти двухъядерного процессора AMD A6-5400K с интегрированной графикой AMD Radeon HD 7540D и уровнем тепловыделения 65 ватт будет поддерживать память типа DDR3 с максимальной частотой лишь 1600 Мгц. Все остальные более старшие решения AMD A8-5500, AMD A8-5600K, AMD A10-5700 должны будут поддерживать наиболее быструю сертифицированную память DDR3 - 1866 Мгц.

    Следует отметить, что покупателям AMD A6-5400K не следует гоняться за памятью DDR3-1600 Мгц. Обыкновенный разгон позволит достичь частоты 1866 Мгц, а если вы откажитесь от разгона - память все равно сможет работать также как и обычная с рабочей частотой 1600 Мгц. А вот при продаже планок памяти на вторичном рынке у вас могут возникнуть проблемы с продажей устаревающей DDR3-1600 Мгц.

    Контроллеры у процессоров AMD Llano и AMD Trinity двухканальные, поэтому планки необходимо приобретать парные.

    Картинка кликабельна --


    Сокет AM3 от AMD является первой платформой для процессоров с интегрированным контроллером оперативной памяти типа DDR3. Предыдущие платформы 939, AM2, AM2+ поддерживали исключительно DDR2 тип памяти. Контроллер данных процессоров двухканальный, поэтому оперативную память необходимо устанавливать четным количеством планок. Официальной базовой частотой для данных процессоров является 1333 Мгц типа DDR3. При планируемом разгоне имеет смысл приобретать более быстрые планки. Так как платформа AM3 уходит в историю, при покупке нового компьютера все равно необходимо брать наиболее оптимальную память по стоимости, желательно с рабочей частотой 1866 Мгц. Интегрированные профили позволят ей запуститься на базовой частоте 1333 Мгц.

    Не следует забывать о существовании процессоров с разблокированным множителем для платформы AM3 - сери AMD Black Edition. Контроллеры оперативной памяти данных процессоров поддерживают планки с частотой до 1600 Мгц. Несмотря на это, опыт показывает, что контроллеры данных процессоров практически не могут выйти за пределы частоты в 1866 Мгц, поэтому приобретать оверклоккерские комплекты памяти для данных решений не имеет никакого смысла.

    Картинка кликабельна --


    Последним поколением сокетов от AMD для обычных процессоров является AM3+ . Данный сокет создан для процессоров серии Bulldozer и готовящихся к началу продаж процессоров Vishera. На данных архитектурах основаны процессоры AMD FX. Все данные процессоры имеют обновленный двухканальный контроллер памяти, поэтому планки следует приобретать попарно. Официально поддерживаемой частотой является цифра 1866 Мгц. Пользователи активно и агрессивно разгоняют процессоры серии AMD FX, поэтому рекомендуется присматриваться к хорошо разгоняемым модулям. Контроллер данных процессоров легко может покорить цифру в 2133 Мгц по памяти, поэтому чаще всего ограничивающим фактором оказываются модули памяти.

    Картинка кликабельна --


    Постепенно мы переходим к рассмотрению сокетов компании Intel . Основной сокетной платформой компании является LGA 1155 , который используется для процессоров старого поколения Intel Sandy Bridge и нового поколения Inte Ivy Bridge. Контроллер оперативной памяти данных процессоров двухканальный, поэтому планки следует приобретать и устанавливать попарно. Если вы собираете платформу для разгона на соответствующем чипсете материнской платы и покупаете соответствующий процессор серии "K", то надо присматриваться к оверклоккерской оперативной памяти с рабочей частотой 2133 Мгц или даже 2400 Мгц.

    Если же вы не планируете разгон или не знали что нужно приобретать материнские платы на чипсетах с маркировкой "P" или "Z", и процессор с разблокированным множителем - смысла тратить средства нет. Приобретаете стандартные модули памяти и живете спокойно.

    На сокете LGA 1156 мы останавливаться не будем, так как она ушла в истрорию. Лишь отметитм, что контроллер данных процессоров двухканальный. Для разгона также рекомендуется приобретать хорошие модули памяти. Во многих случаях можно обойтись планками с рабочей частотой 1866 Мгц.

    Картинка кликабельна --


    Платформа LGA 1366 в отличии от LGA 1156 продолжает свою жизнь. Данная платформа является первой и единственной с наличием трехканального контроллера оперативной памяти в процессорах. Особенности разгона процессоров на ядре Gulftown говорит о том, что для успеха необходимо приобретать качественные комплекты оверклоккерской оперативной памяти. Если бюджет ограничен, вполне можно ограничиться планками с частотой 1866 Мгц.

    Картинка кликабельна --


    Платформа LGA 2011 - решение для энтузиастов желающих купить процессоры Intel Sandy Bridge-E. Стоимость процессоров и материнских плат данного формата находятся на наиболее высоком уровне. Процессор имеет четырехканальный контроллер оперативной памяти, поэтому установка четырех модулей одновременно - минимальное требование для пользователя. Учитывая высокую стоимость оверклоккерских комплектов на четыре планки памяти, рекомендовать их покупку мы можем только при неограниченности бюджета. В стандартном случае обычные планки на 1866 Мгц от Samsung или Hynix.

    Очень хочется надеяться, что данная статья поможет вам определиться с выбором памяти для своего процессора.



    
    Top