Аналоговое изображение отличается от дискретного. Восстановление непрерывного сигнала по модулированной импульсной последовательности. Чем аналоговый, дискретный и цифровой сигналы отличаются друг от друга

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы.»

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1( t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к ( m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

Дискретные сигналы естественно возникают в тех случаях, когда источник сообщений выдает информацию в фиксированные моменты времени. Примером могут служить сведения о температуре воздуха, передаваемые радиовещательными станциями несколько раз в сутки. Свойство дискретного сигнала проявляется здесь предельно ярко: в паузах между сообщениями никаких сведений о температуре нет. Фактически же температура воздуха изменяется во времени плавно, так что результаты измерения возникают за счет дискретизации непрерывного сигнала - операции, которая фиксирует отсчетные значения.

Дискретные сигналы приобрели особое значение в последние десятилетия под влиянием совершенствования техники связи и развития способов обработки информации быстродействующими вычислительными устройствами. Большие успехи достигнуты в разработке и использовании специализированных устройств для обработки дискретных сигналов, так называемых цифровых фильтров.

Настоящая глава посвящена рассмотрению принципов математического описания дискретных сигналов, а также теоретических основ построения линейных устройств для их обработки.

15.1. Модели дискретных сигналов

Различие между дискретными и аналоговыми (непрерывными) сигналами подчеркивалось в гл. 1 при классификации радиотехнических сигналов. Напомним основное свойство дискретного сигнала: его значения определены не во все моменты времени, а лишь в счетном множестве точек. Если аналоговый сигнал имеет математическую модель вида непрерывной или кусочно-непрерывной функции, то отвечающий ему дискретный сигнал представляет собой последовательность отсчетных значений сигнала в точках соответственно.

Дискретизирующая последовательность.

На практике, как правило, отсчеты дискретных сигналов берут во времени через равный промежуток А, называемый интервалом (шагом) дискретизации:

Операцию дискретизации, т. е. переход от аналогового сигнала к дискретному сигналу , можно описать, введя в рассмотрение обобщенную функцию

называемую дискретизирующей последовательностью.

Очевидно, дискретный сигнал представляет собой функционал (см. гл. 1), определенный на множестве всевозможных аналоговых сигналов и равный скалярному произведению функции

Формула (15.3) указывает путь практической реализации устройства для дискретизации аналогового сигнала. Работа дискретизатора основана на операции стробирования (см. гл. 12) - перемножения обрабатываемого сигнала и «гребенчатой» функции Поскольку длительность отдельных импульсов, из которых складывается дискретизирующая последовательность, равна нулю, на выходе идеального дискретизатора в равноотстоящие моменты времени возникают отсчетные значения обрабатываемого аналогового сигнала.

Рис. 15.1. Структурная схема импульсного модулятора

Модулированные импульсные последовательности.

Дискретные сигналы начали использовать еще в 40-х годах при создании радиотехнических систем с импульсной модуляцией. Этот вид модуляции отличается тем, что в качестве «несущего колебания» вместо гармонического сигнала служит периодическая последовательность коротких импульсов.

Импульсный модулятор (рис. 15.1) представляет собой устройство с двумя входами, на один из которых подается исходный аналоговый сигнал На другой вход поступают короткие синхронизирующие импульсы с интервалом повторения . Модулятор построен таким образом, что в момент подачн каждого синхронизирующего импульса происходит измерение мгновенного значения сигнала х(t). На выходе модулятора возникает последовательность импульсов, каждый из которых имеет площадь, пропорциональную соответствующему отсчетному значению аналогового сигнала.

Сигнал на выходе импульсного модулятора будем называть модулированной импульсной последовательностью (МИП). Естественно, что дискретный сигнал является математической моделью МИП.

Отметим, что с принципиальной точки зрения характер импульсов, из которых складывается МИП, безразличен. В частности, эти импульсы могут иметь одинаковую длительность, в то время как их амплитуда пропорциональна отсчетным значениям дискретизируемого сигнала. Такой вид преобразования непрерывного сигнала получил название амплитудно-импульсной модуляции (АИМ). Возможен другой способ - широтно-импульсная модуляция (ШИМ). Здесь амплитуды импульсов на выходе модулятора постоянны, а их длительность (ширина) пропорциональна мгновенным значениям аналогового колебания.

Выбор того или иного способа импульсной модуляции диктуется рядом технических соображений, удобством схемной реализации, а также характерными особенностями передаваемых сигналов. Например, нецелесообразно использовать АИМ в случае, если полезный сигнал изменяется в очень широких пределах, т. е., как часто говорят, имеет широкий динамический диапазон. Для неискаженной передачи такого сигнала требуется передатчик со строго линейной амплитудной характеристикой. Создание такого передатчика - самостоятельная, технически сложная проблема. Системы ШИМ не предъявляют требований к линейности амплитудных характеристик передающего устройства. Однако их схемная реализация может оказаться несколько сложнее по сравнению с системами АИМ.

Математическую модель идеальной МИП можно получить следующим образом. Рассмотрим формулу динамического представления сигнала (см. гл. 1):

Поскольку МИП определена лишь в точках интегрирование в формуле (15.4) следует заменить суммированием по индексу к. Роль дифференциала будет играть интервал (шаг) дискретизации . Тогда математическая модель модулированной импульсной последовательности, образованной бесконечно короткими импульсами, окажется заданной выражением

где - выборочные значения аналогового сигнала.

Спектральная плотность модулированной импульсной последовательности.

Исследуем спектр сигнала, возникающего на выходе идеального импульсного модулятора и описываемого выражением (15.5).

Заметим, что сигнал вида МИП с точностью до коэффициента пропорциональности А равен произведению функции и дискретизирующей последовательности

Известно, что спектр произведения двух сигналов пропорционален свертке их спектральных плотностей (см. гл. 2). Поэтому бели известны законы соответствия сигналов и спектров:

то спектральная плотность МИП-сигнала

Чтобы найти спектральную плотность дискретизирующей последовательности, разложим периодическую функцию в комплексный ряд Фурье:

Коэффициенты этого ряда

Обратившись к формуле (2.44), получаем

т. е. спектр дискретизирующей последовательности состоит из бесконечной совокупности дельта-импульсов в частотной области. Данная спектральная плотность является периодической функцией с периодом

Наконец, подставив формулу (15.8) в (15.7) и изменив порядок следования операций интегрирования и суммирования, находим

Итак, спектр сигнала, полученного в результате идеальной дискретизации бесконечно короткими стробирующими импульсами, представляет собой сумму бесконечного числа «копий» спектра исходного аналогового сигнала. Копии располагаются на оси частот через одинаковые интервалы равные значению угловой частоты первой гармоники дискретизирующей импульсной последовательности (рис. 15.2, а, б).

Рис. 15.2. Спектральная плотность модулированной импульсной последовательности при различных значениях верхней граничной частоты: а - верхняя граничная частота велика; б - верхняя граничная частота мала (цветом обозначена спектральная плотность исходного сигнала, подвергнутого дискретизации)

Восстановление непрерывного сигнала по модулированной импульсной последовательности.

В дальнейшем будем полагать, что вещественный сигнал имеет низкочастотный спектр, симметричный относительно точки и ограниченный верхней граничной частотой Из рис. 15.2, б следует, что если , то отдельные копии спектра не накладываются друг на друга.

Поэтому аналоговый сигнал с таким спектром, подвергнутый импульсной дискретизации, может быть совершенно точно восстановлен с помощью идеального ФНЧ, на вход которого подана импульсная последовательность вида (15.5). При этом наибольший допустимый интервал дискретизации , что согласуется с теоремой Котельникова.

Действительно, пусть фильтр, восстанавливающий непрерывный сигнал, имеет частотный коэффициент передачи

Импульсная характеристика этого фильтра описывается выражением

Принимая во внимание, что МИП-сигнал вида (15.5) есть взвешенная сумма дельта-импульсов, находим отклик на выходе восстанавливающего фильтра

Данный сигнал с точностью до масштабного коэффициента повторяет исходное колебание с ограниченным спектром.

Идеальный ФНЧ физически нереализуем и может служить лишь теоретической моделью для объяснения принципа восстановления сообщения по его дискретным импульсным отсчетам. Реальный фильтр нижних частот имеет АЧХ, которая либо охватывает несколько лепестков спектральной диаграммы МИП, либо, концентрируясь вблизи нулевой частоты, оказывается значительно уже центрального лепестка спектра. Для примера на рис. 15.3, б-е приведены кривые, характеризующие сигнал на выходе RC-цепи, используемой в качестве восстанавливающего фильтра (рис. 15.3, а).

Рис. 15.3. Восстановление непрерывного сигнала по его импульсным отсчетам с помощью RC-цепи: а - схема фильтра; б - дискретный входной сигнал; в, г - АЧХ фильтра и сигнал на его выходе в случае ; д, е - то же, для случая

Из приведенных графиков видно, что реальный восстанавливающий фильтр неизбежно искажает входное колебание.

Заметим, что для восстановления сигнала можно использовать как центральный, так и любой боковой лепесток спектральной диаграммы.

Определение спектра аналогового сигнала по совокупности отсчетов.

Располагая МИП-представлением, можно не только восстановить аналоговый сигнал, но и найти его спектральную плотность. Для этого следует прежде всего непосредственно связать спектральную плотность МИП с отсчетными значениями:

(15.13)

Данная формула исчерпывающе решает поставленную задачу при указанном выше ограничении.

Существуют аналоговые, дискретные и цифровые сигналы. Аналоговые сигналы описываются непрерывной во времени функцией , которая может принимать любые значения в определенном интервале; дискретные сигналы представляют собой последовательности или отсчеты функции , взятые в определенные дискретные моменты времени nT ; цифровыми являются сигналы, которые в дискретные моменты времени nT принимают конечные дискретные значения – уровни квантования, которые затем кодируются двоичными числами. Если в цепь микрофона (рис. 1), где ток является непрерывной функцией времени, встроить ключ и периодически на короткие мгновения замыкать его, то ток в цепи будет иметь вид узких импульсов с амплитудами, повторяющими форму непрерывного сигнала. Последовательность этих импульсов, которые называют отсчетами непрерывного сигнала, и представляет собой, не что иное, как дискретный сигнал.
Рис. 1 В отличие от непрерывного сигнала дискретный сигнал можно обозначить . Однако, чаще его обозначают , заменяя непрерывное время t дискретными моментами nT , следующими строго через интервал T . Используются и более краткие обозначения: и . Причем, во всех этих записях n – целое число, принимающее как положительные, так и отрицательные значения. Так, на рис. 1 при n < 0 дискретный сигнал . При n = 0 значение равно значению сигнала в момент времени t = 0. При n > 0 отсчеты повторяют форму сигнала , т.к. их амплитуды равны значениям непрерывного сигнала в моменты времени nT . Рис. 2 Дискретные сигналы можно задавать графиками, как это показано на рис. 1, формулами, например, , в виде таблиц дискретных значений или в виде комбинации этих способов. Рассмотрим примеры некоторых дискретных сигналов, полученных из типовых аналоговых сигналов. Все средства связи, которые на сегодняшний день используются в мире, основаны на передаче электрического тока из одной точки в другую. Как работа в сети Internet, так и разговор с другом по телефону обеспечиваются за счет постоянного протекания тока по оборудованию телекоммуникационной инфраструктуры. По каналам связи могут передаваться различные типы сигналов. В этой книге рассматриваются два основных типа сигналов: аналоговые и цифровые. Некоторые виды физической передающей среды, как, например, волоконно-оптический кабель, используются для передачи данных в сети провайдера в виде световых сигналов. Принципы цифровой передачи для такой среды такие же, однако для ее организации используются лазеры и светодиоды. Аналоговые и цифровые сигналы коренным образом отличаются друг от друга. Условно можно сказать, что они находятся на разных концах одного и того же спектра. Из-за таких существенных различий между двумя типами сигналов для организации "моста" между ними приходится использовать промежуточные устройства, наподобие цифро-аналоговых преобразователей (они рассматриваются ниже в текущей главе). Основное различие между аналоговыми и цифровыми сигналами заключается в самой структуре сигнального потока. Аналоговые сигналы представляют собой непрерывный поток, характеризующийся изменениями частоты и амплитуды. Это означает, что форма аналогового сигнала обычно похожа на синусоиду (т.е. гармоническую волну), представленную на рис. 1.2. Зачастую на иллюстрациях, изображающих гармоническую волну, весь сигнал характеризуется одним и тем же соотношением частоты и амплитуды, однако при графическом представлении сложной волны видно, что такое соотношение изменяется в зависимости от частоты.
Цифровым сигналам соответствуют дискретные электрические значения, которые передаются индивидуально по некоторой физической передающей среде. В отличие от аналоговых сигналов, в которых количество возможных значений амплитуды почти бесконечно, для цифровых сигналов она может принимать одно из двух (или четырех) различных значений - как положительных, так и отрицательных. Цифровые сигналы передаются в виде единиц и нулей, которые обычно называют двоичными. Более подробно потоки цифровых сигналов рассматриваются в главе 3, "Аналого-цифровое преобразование". Как и в любой другой технологии, для описания аналоговых сигналов используются базовые концепции и собственная терминология. Непрерывные аналоговые сигналы имеют три основные характеристики: амплитуду; длину волны; частоту.

Мы рассматривали различные определения понятия "информация" и пришли к выводу, что информация может быть определена множеством разных способов в зависимости от выбранного подхода. Но об одном мы можем говорить однозначно: информация - знания, данные, сведения, характеристики, отражения и т.д. - категория нематериальная . Но мы живем в мире материальном. Следовательно, для существования и распространения в нашем мире информация должна быть связана с какой-либо материальной основой. Без нее информация не может передаваться и сохраняться.

Тогда материальный объект (или среда), с помощью которого представляется та или иная информация будет являться носителем информации , а изменение какой-либо характеристики носителя мы будем называть сигналом .
Например, представим равномерно горящую лампочку, она не передает никакой информации. Но, если мы будем включать и выключать лампочку (т.е. изменять ее яркость), тогда с помощью чередований вспышек и пауз мы сможем передать какое-нибудь сообщение (например, посредством азбуки Морзе). Аналогично, равномерный гул не дает возможности передать какую-либо информацию, однако, если мы будем изменять высоту и громкость звука, то сможем сформировать некоторое сообщение (что мы и делаем с помощью устной речи).

При этом сигналы могут быть двух видов: непрерывный (или аналоговый ) и дискретный .
В учебнике даны следующие определения.

Непрерывный сигнал принимает множество значений из некоторого диапазона. Между значениями, которые он принимает, нет разрывов.
Дискретный сигнал принимает конечное число значений. Все значения дискретного сигнала можно пронумеровать целыми числами.

Немного уточним эти определения.
Сигнал называется непрерывным (или аналоговым), если его параметр может принимать любое значение в пределах некоторого интервала.

Сигнал называется дискретным , если его параметр может принимать конечное число значений в пределах некоторого интервала.

Графики этих сигналов выглядят следующим образом

Примерами непрерывных сигналов могут быть музыка, речь, изображения, показания термометра (высота столба ртути может быть любой и представляет собой ряд непрерывных значений).

Примерами дискретных сигналов могут быть показания механических или электронных часов, тексты в книгах, показания цифровых измерительных приборов и т.д.

Вернемся к примерам, рассмотренным в начале сообщения - мигающая лампочка и человеческая речь. Какой из этих сигналов является непрерывным, а какой дискретным? Ответьте в комментариях и аргументируйте свой ответ. Можно ли непрерывную информацию преобразовать в дискретную? Если да - приведите примеры.

Сигналы могут быть: аналоговые (непрерывные) и дискретные.

Дискретный сигнал - информационный сигнал. Сигнал называется дискретным, если он может принимать лишь конечное число значений.

См. также

Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи.

Литература

  • Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. Прикладная теория цифровых автоматов. - К. : Вища школа, 1987. - 375 с.

Wikimedia Foundation . 2010 .

  • Дискретное преобразование Фурье над конечным полем
  • Дискриминируемые группы населения в Японии

Смотреть что такое "Дискретный сигнал" в других словарях:

    Дискретный сигнал - сигнал, имеющий конечное число значений. Обычно сигналы, передаваемые через дискретные каналы, имеют два или три значения. Использование сигналов с тремя значениями обеспечивает синхронизацию передачи. По английски: Discrete signal Синонимы:… … Финансовый словарь

    дискретный сигнал

    дискретный сигнал - Cигнал, информативный параметр которого может изменяться только прерывисто и иметь только конечное число значений в заданном диапазоне в течение определенного интервала времени. [Источник] EN discretely timed signal discrete signal a signal… … Справочник технического переводчика

    Дискретный сигнал - 13. Дискретный сигнал Сигнал, имеющий конечное число значений величин Источник …

    дискретный сигнал - diskretusis signalas statusas T sritis automatika atitikmenys: angl. sampled signal vok. abgetastetes Signal, n rus. дискретный сигнал, m pranc. signal échantillonné, m; signal discret, m … Automatikos terminų žodynas

    дискретный сигнал - Сигнал, описываемый дискретной функцией времени … Политехнический терминологический толковый словарь

    дискретный сигнал времени - diskretinamojo laiko signalas statusas T sritis radioelektronika atitikmenys: angl. discrete time signal vok. diskretes Zeitsignal, n rus. дискретный сигнал времени, m pranc. signal discret de temps, m … Radioelektronikos terminų žodynas

    Сигнал (техника) - Сигнал в теории информации и связи называется материальный носитель информации, используемый для передачи сообщений по системе связи. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым… … Википедия

    Дискретный - (от лат. discretus раздельный, прерывистый). Это прилагательное может употребляться в разных контекстах: В дискретной математике дискретным называется счётное множество, эта концепция также важна в комбинаторике и теории вероятностей. В общей… … Википедия

    дискретный - 4.2.6 дискретный: Относящийся к данным, которые состоят из отдельных элементов, таких как символы, или к физическим величинам, имеющим конечное число различных распознаваемых значений, а также к процессам и функциональным блокам, использующим эти … Словарь-справочник терминов нормативно-технической документации





Top