Принцип работы сетей GSM.  Стандарты сотовой связи: GSM

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) — глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

Сеть GSM делится на две системы: SS (Switching System) — коммутационная подсистема, BSS (Base Station System) — система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) — узел коммутации сети GSM
  • GMSC (Gate MSC) — коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) — база данных домашних абонентов
  • VLR (Visitor Location Register) — база данных гостевых абонентов
  • AUC (Authentication Cetner) — центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller) — контроллер базовых станций
  • BTS (Base Transeiver Station) — приемо-передающая станция
  • MS (Mobile Station) — мобильная станция

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC — центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

По состоянию на ноябрь 2007г. в России было около 168 млн. абонентов мобильной связи. При этом 85 % из них - клиенты GSM-операторов "большой тройки" - "Мобильных телесистем" (МТС), "Мегафона" и "Вымпелкома". Несмотря на то, что годовые темпы прироста постоянно сокращаются, уровень проникновения сотовых услуг в целом по России составляет 107%, при этом в Московской лицензионной зоне (МЛЗ) этот показатель составил 164%.

Лидерство в приросте абонентской базы в общероссийском масштабе удерживает Мегафон, а в МЛЗ он уступает по этому показателю компании МТС. Среди федеральных и региональных операторов наиболее высокие темпы прироста абонентов в годовом исчислении демонстрируют Tele2, НТК, Байкалвестком и Енисейтелеком.

Региональные GSM-операторы, не входящие в "большую сотовую тройку", ищут способ конкурентной борьбы с гигантами рынка. Большинство независимых GSM-операторов в России появились в последние несколько лет на базе операторов устаревшего стандарта AMPS. Все они в 2001-2002 гг. получили от Минсвязи лицензии, дающие им право на работу в стандарте GSM-1800.
Сейчас эти компании одна за другой запускают GSM-сети, но их абоненты, оказавшись в других регионах, вынуждены платить за связь в роуминге по $1-$1,5 за минуту. Теперь эти компании намерены договориться о единых роуминговых тарифах друг для друга, что позволит абонентам сетей при перемещении по стране ощущать себя не хуже клиентов МТС, "Вымпелкома" и "МегаФона", для которых единые и сравнительно низкие тарифы на внутрисетевой роуминг являются одним из ключевых преимуществ операторов "большой тройки".

Открытое Акционерное Общество «Мобильные ТелеСистемы» (МТС) - крупнейший оператор сотовой связи в России и странах СНГ, обслуживающий более 74 миллионов абонентов. Лицензионный портфель МТС включает большинство регионов России, Украину, Белоруссию, Узбекистан и Туркменистан, а население, проживающее в зоне действия сети МТС, составляет более 230 миллионов человек.
Компания "Мобильные ТелеСистемы" была образована в октябре 1993 года. 19 ноября 1993 года МТС получила первую лицензию на оказание услуг сотовой связи стандарта GSM. 15 мая 1994 г. были совершены первые звонки в сети МТС и уже 7 июля 1994 года МТС начала подключать первых абонентов.
В июне 2002 года МТС запустила сеть в Республике Беларусь. В марте 2003 года МТС приобрела контрольный пакет акций UMC, ведущего оператора мобильной связи в Украине.

ОАО "Мегафон" - общероссийский оператор мобильной связи стандарта GSM 900/1800. Образован в мае 2002 года. Лицензионная территория ОАО "МегаФон" охватывает 100% территории России - все 89 субъектов РФ, где проживает 145 миллионов человек. МегаФон - первый общероссийский оператор мобильной связи стандарта GSM 900/1800.

ОАО "ВымпелКом" является оператором сотовой связи в России, предоставляющим свои услуги под торговой маркой "Билайн". Лицензии на предоставление услуг сотовой связи группы компаний "ВымпелКом" охватывают территорию, на которой проживает 94% населения России, включая Москву, Московскую область и Санкт-Петербург. Сеть "Билайн" работает на территории 76 субъектов РФ.
Компания "ВымпелКом" организована 15сентября 1992 г. В июне 1997 года осуществлен успешный запуск первой в России сети стандарта GSM-1800- "БИЛАЙН 1800". 21 октября 1998 года компания успешно запустила в Москве первую очередь двухдиапазонной сети GSM-900/1800.
24 марта 1999 года АО "ВымпелКом" вошел в число членов Ассоциации Операторов GSM, которая объединяет компании, работающие встандарте GSM-900 и GSM-1800 на территории России и ряда стран СНГ.

ЗАО «СредневолжскаяМежрегиональная Ассоциация РадиоТелекоммуникационных Систем» (СМАРТС) было основано в мае 1991 г. в Самаре. Учредителями компании на 95% являются физические лица. Сейчас GSM-сеть СМАРТС охватывает 16 регионов России. На сегодняшний день СМАРТС заключила роуминговые соглашения практически со всеми российскими сетями в 74 регионах. Мировой роуминг у компании действует в 78 странах.

ОАО"Уралсвязьинформ" –крупнейший оператор мобильной связи и интернет-услуг Уральского региона. Компания работает на территории семи субъектов РФ общей площадью 1,9 млн. кв. км с населением более 15 млн. человек

НСС Нижегородская Сотовая Связь - в конце июня 1995 года компания начала работу с абонентами. В 1999 году компания наладила связь с миром посредством международного роуминга.

ОАО "Сибирьтелеком" - это крупнейший оператор телекоммуникационных услуг в Сибирском федеральном округе. Компания действует на территории около 5 тыс.кв.км с численностью населения порядка 21 млн. человек.

TELE2 , до 1993года известная под названием Comviq, была основана в Швеции в 1981 году. В России TELE2 являетс явладельцем 12 российских компаний-операторов мобильной связи. Первая в России сеть мобильной связи TELE2 была запущена в Иркутске 1 апреля 2003 года.

Знаете ли вы, что

(2 Generation) (1G - аналоговая сотовая связь, 2G - цифровая сотовая связь, 3G - широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями , в том числе Интернет).

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

  • Однодиапазонные - телефон может работать в одной полосе частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённого диапазона частот в некоторых моделях телефонов, например Motorola C115, или с помощью инженерного меню телефона.
  • Двухдиапазонные (Dual Band) - для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады.
  • Трёхдиапазонные (Tri Band) - для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады.
  • Четырехдиапазонные (Quad Band) - поддерживают все диапазоны 850/900/1800/1900.

Коммерческие сети GSM начали действовать в Европейских странах в середине г. GSM разработан позже, чем аналоговая сотовая связь и во многих отношениях была лучше спроектирована. Северо-Американский аналог - PCS, вырастил из своих корней стандарты включая цифровые технологии TDMA и CDMA , но для CDMA потенциальное улучшение качества обслуживания так и не было никогда подтверждено.

GSM Phase 1

1982 (Groupe Spécial Mobile) - 1990 г. Global System for Mobile Communications. Первая коммерческая сеть в январе г. Цифровой стандарт, поддерживает скорость передачи данных до 9,6 кбит/с. Полностью устарел, производство оборудования под него прекращено.

В 1991 году были введены услуги стандарта GSM «ФАЗА 1».

Подсистема базовых станций

Антенны трех базовых станций на мачте

BSS состоит из собственно базовых станций (BTS - Base Transceiver Station) и контроллеров базовых станций (BSC - Base Station Controller). Область, накрываемая сетью GSM, разбита на соты шестиугольной формы. Диаметр каждой шестиугольной ячейки может быть разным - от 400 м до 50 км. Максимальный теоретический радиус ячейки составляет 120 км , что обусловлено ограниченной возможностью системы синхронизации к компенсации времени задержки сигнала. Каждая ячейка покрывается одной BTS, при этом ячейки частично перекрывают друг друга, тем самым сохраняется возможность передачи обслуживания MS при перемещении её из одной соты в другую без разрыва соединения (Операция передачи обслуживания мобильного телефона (MS) от одной базовой станции (BTS) к другой в момент перехода мобильного телефона границы досягаемости текущей базовой станции во время разговора, или GPRS-сессии называется техническим термином «Handover» ). Естественно, что на самом деле сигнал от каждой станции распространяется, покрывая площадь в виде круга, но при пересечении получаются правильные шестиугольники. Каждая база имеет шесть соседних в связи с тем, что в задачи планирования размещения станций входила такая, как минимизация зон перекрывания сигнала от каждой станции. Большее число соседних станций, чем 6 - особых выгод не несёт. Рассматривая границы покрытия сигнала от каждой станции уже в зоне перекрытия, как раз получаем - шестиугольники.

Базовая станция (BTS) обеспечивает приём/передачу сигнала между MS и контроллером базовых станций. BTS является автономной и строится по модульному принципу. Направленные антенны базовых станций могут располагаться на вышках, крышах зданий и т. д.

Контроллер базовых станций (BSC) контролирует соединения между BTS и подсистемой коммутации. В его полномочия также входит управление очерёдностью соединений, скоростью передачи данных, распределение радиоканалов, сбор статистики, контроль различных радиоизмерений, назначение и управление процедурой Handover.

Подсистема коммутации

NSS состоит из нижеследующих компонентов.

Центр коммутации (MSC - Mobile Switching Centre)

MSC контролирует определённую географическую зону с расположенными на ней BTS и BSC. Осуществляет установку соединения к абоненту и от него внутри сети GSM, обеспечивает интерфейс между GSM и ТфОП , другими сетями радиосвязи, сетями передачи данных. Также выполняет функции маршрутизации вызовов, управление вызовами, эстафетной передачи обслуживания при перемещении MS из одной ячейки в другую. После завершения вызова MSC обрабатывает данные по нему и передаёт их в центр расчётов для формирования счета за предоставленные услуги, собирает статистические данные. MSC также постоянно следит за положением MS, используя данные из HLR и VLR, что необходимо для быстрого нахождения и установления соединения с MS в случае её вызова.

Домашний регистр местоположения (HLR - Home Location Registry)

Содержит базу данных абонентов, приписанных к нему. Здесь содержится информация о предоставляемых данному абоненту услугах, информация о состоянии каждого абонента, необходимая в случае его вызова, а также Международный Идентификатор Мобильного Абонента (IMSI - International Mobile Subscriber Identity), который используется для аутентификации абонента (при помощи AUC). Каждый абонент приписан к одному HLR. К данным HLR имеют доступ все MSC и VLR в данной GSM-сети, а в случае межсетевого роуминга - и MSC других сетей.

Гостевой регистр местоположения (VLR - Visitor Location Registry)

VLR обеспечивает мониторинг передвижения MS из одной зоны в другую и содержит базу данных о перемещающихся абонентах, находящихся в данный момент в этой зоне, в том числе абонентах других систем GSM - так называемых роумерах. Данные об абоненте удаляются из VLR в том случае, если абонент переместился в другую зону. Такая схема позволяет сократить количество запросов на HLR данного абонента и, следовательно, время обслуживания вызова.

Регистр идентификации оборудования (EIR - Equipment Identification Registry)

Содержит базу данных, необходимую для установления подлинности MS по IMEI (International Mobile Equipment Identity). Формирует три списка: белый (допущен к использованию), серый (некоторые проблемы с идентификацией MS) и чёрный (MS, запрещённые к применению). У российских операторов (и большей части операторов стран СНГ) используются только белые списки, что не позволяет раз и навсегда решить проблему кражи мобильных телефонов.

Центр аутентификации (AUC - Authentification Centre)

Здесь производится аутентификация абонента, а точнее - SIM (Subscriber Identity Module). Доступ к сети разрешается только после прохождения SIM процедуры проверки подлинности, в процессе которой с AUC на MS приходит случайное число RAND, после чего на AUC и MS параллельно происходит шифрование числа RAND ключом Ki для данной SIM при помощи специального алгоритма. Затем с MS и AUC на MSC возвращаются «подписанные отклики» - SRES (Signed Response), являющиеся результатом данного шифрования. На MSC отклики сравниваются, и в случае их совпадения аутентификация считается успешной.

Подсистема OMC (Operations and Maintenance Centre)

Соединена с остальными компонентами сети и обеспечивает контроль качества работы и управление всей сетью. Обрабатывает аварийные сигналы, при которых требуется вмешательство персонала. Обеспечивает проверку состояния сети, возможность прохождения вызова. Производит обновление программного обеспечения на всех элементах сети и ряд других функций.

См. также

  • Список моделей GPS-трекеров
  • GSM-терминал

Примечания

Ссылки

  • Ассоциация GSMA (The GSM Association) (англ.)
  • 3GPP - Текущий уровень стандартизации GSM, свободные стандарты (англ.)
  • Схема нумерации спецификаций 3GPP (англ.)
  • (англ.)
  • Буклет ВОЗ «Построение диалога о рисках от электромагнитных полей» (pdf 2.68Mb)
  • «Предложения ВОЗ по Проекту Изучения Влияния Электромагнитных Полей; Влияние Радиополей Мобильных Телекоммуникаций на Здоровье; Рекомендации Органам Государственной Власти»

В переводе с английского, GSM переводится как - система глобальной мобильной связи, принадлежащая к сетям второго поколения. Давайте немного вернемся в историю и рассмотрим, как появился и развивался этот популярный стандарт.

Стандарты сети GSM

  1. Аналоговая связь – 1G. Данный вид связи начал свое развитие в 1982 году. Во времена появления AMPS – Усовершенствованная Подвижная Телефонная Служба. Данный сервис использовался для голосовых каналов связи, работающих на частоте от 800 МГц.
  2. Цифровая связь – 2G. С наступлением 90-х годов, прогресс сделал шаг вперед, и появилось 2-е поколение сотовой связи. Активно развиваясь в направление освоения цифровой связи, были разработаны такие стандарты, как EDGE – 2,7G и GPRS – 2,5G.
  3. Широкополосная цифровая связь – 3G. Данный стандарт появился относительно недавно, и помимо услуг сотовой связи предоставляет своим пользователям доступ к сети Интернет. В след за ним появляется улучшенный стандарт HSDPA – 3.5G.
  4. Высокоскоростная мобильная связь – 4G. Новое поколение сотовой связи, отличается от предыдущих стандартов более высокой скоростью и качеством сигнала. Так же помимо сотовой связи, поддерживает доступ к сети Интернет.

В наши дни GSM стандарт самый популярный и распространенный не только в России, но и во всем мире. Мобильные телефоны этого стандарта работают в 4-х диапазонах частот – 850 МГц, а так же 900, 1800 и 1900 МГц.

Как все начиналось

Первоначально аббревиатура GSM имела другое значение - Groupe Special Mobile, название группы специалистов создавшей этот стандарт. В последующем значение сменилось на уже привычное - Global System for Mobile Communications, в переводе означающее Система Глобальной Мобильной Связи. Это название и прижилось во всем мире.

Все началось с того, что в 82 году прошлого века, 26 телефонных компаний Европы занялись разработкой общего стандарта телефонной связи. Было решено, что система связи будет работать в частотном диапазоне в пределах 900 MHz.

В 89 году того же века Телекоммуникационный Институт Стандартов взялся за развитие нового стандарта связи. А в 91 году сеть GSM уже функционировала в Европе. В последующем данный стандарт распространился по всему миру, и до сих пор является основным, востребованным стандартом сотовой связи.

Какие услуги доступны с GSM

Основные услуги доступные в сети GSM:

  • Обмен данными – синхронный и асинхронный обмен.
  • GPRS – пакетная передача данных.
  • Голосовая связь.
  • Прием и передача текстовых сообщений – SMS.
  • Посыл факсимильных сообщений.

Дополнительные услуги доступные в сети GSM:

Определение номера звонящего абонента.

  • Анти определение исходящего номера – услуга блокирующая возможность определить ваш номер.
  • Переадресация входящего вызова на другой номер.
  • Удержание вызова. Режим ожидания.
  • Одновременная связь с множеством оппонентов, для создания голосовых конференций.
  • Голосовая почта.

Преимущества и недостатки сети GSM.

Преимущества:

  1. Телефоны, используемые в сети GSM, отличаются компактностью, малым весом и низкой энергопотребляемостью. Современные аппараты способны работать долгое время без перезарядки аккумулятора, в отличие от своих аналоговых предшественников. Благодаря контролю с базовых станций оператора происходит снижение уровня сигнала, если он превышает необходимый для работы уровень. Все это способствует качеству и удобству связи.
  2. Возможность большого количества одновременных соединений. Данная услуга доступна как внутри сети, так и между разными операторами, предоставляющими услуги сотовой связи.
  3. Минимальное количество радиопомех. Мобильная связь работает на своих, не зависимых частотных диапазонах. Благодаря этому уровень помех сведен к минимуму, и не что не мешает вашему общению.
  4. GSM обладает надежной защитой от вторжения в вашу личную жизнь – незаконное прослушивание личных разговоров, и прочие не легальные действия. Это достигается путем сложных алгоритмов цифрового шифрования. Данная система была разработана фирмой Nokia, и на сегодняшний день является мировым стандартом по защите сетей сотовой связи.
  5. Доступность роуминга внутри сети и между разными операторами. Благодаря этому абонент находясь в любой точке планеты, может звонить в разные страны и города, не зависимо от того какой оператор принимает сигнал. Переход сигнала из одной сети в другую происходит автоматически.

Недостатки:

  1. Вероятность искажения голоса, происходящая в момент цифровой обработки сигнала. Данный фактор зависит в первую очередь от качества передаваемого сигнала и самого аппарата сотовой связи.
  2. Нарушение качества связи вдали от базовой станции оператора. Стабильная связь обеспечивается в радиусе 120 км, между мобильным телефоном и базовой станцией. В городах такое явление практически не наблюдается, но на длинных пригородных трассах сигнал может плавать - пропадать и появляться. Это происходит вследствие отдаления приемника телефона от базовой станции.
  3. Повышенный уровень излучения у мобильных телефонов. Данное обстоятельство может принести реальный вред физическому здоровью человека. Чтобы избежать таких последствий используйте чехлы, и не носите телефон во внутренних карманах своей одежды. Хотя прогресс не стоит на месте. Современные телефоны более защищены и не приносят вред здоровью человека, в отличие от своих ранних собратьев.

В комментариях к постам про сеть WiMAX ( , ) и про GPRS был выражен интерес к сетям сотовой связи, поэтому решил реализовать свою давнюю задумку и описать хабрасообществу как же устроены современные сети сотовой связи.

На приведённой картинке изображена общая структура сетей сотовой связи. Изначально сеть разделяется на 2 больших подсети - сеть радиодоступа (RAN - Radio Access Network) и сеть коммутации или опорную сеть (CN - Core Network).

Хочу подчеркнуть, что буду описывать именно существующие сети сотовой связи для СНГ, потому что в Европе, Америке и Азии сети более развиты и их структура несколько отличается от наших сетей, про это напишу как-нибудь позже, если будет интерес.

Сперва, хотелось бы рассказать в общих словах про сеть, а потом более подробно расскажу про функции каждого из элементов сети.

Сеть радиодоступа

Существующие сети радиодоступа у наших операторов - продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN - GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN - UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN. Наибольшие изменения при переходе от GSM к UMTS происходят как раз в сети радиодоступа - оператору нужно построить вторую сеть и заново покрыть уже имеющиеся территории.

Сеть радиодоступа - эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.

Опорная сеть

Опорная сеть - ядро сетей сотовой связи. Название опорная - мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS - Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа. Опорная сеть мало эволюционирует в связи с эволюцией от GSM к UMTS, эта сильная эволюция происходит немного позже - её уже прошли западные и азиатские операторы, у нас же она только начинается.

Опорная сеть на приведённой выше картинке разделена на 2 части - верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).

Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах - проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи:)

HLR - Home Location Register, Регистр положения домашних абонентов.
По сути это большая база данных, в которой хранится всё об абоненте данной сети. В крупных сетях, таких, как у операторов большой тройки, таких узлов несколько - они разбросаны по регионам. Их количество измеряется единицами штук. Для того, чтобы понимать порядки - в Питере такой узел один, в Москве другой, на Урале ещё один, ещё на Кавказе, в Сибири - 3-4 штучки… На практике это может быть распределённая БД, потому что ёмкости одного HLR может не хватить для хранения данных обо всех абонентах. Тогда оператор докупает ещё один HLR (физическое устройство) и организует распределённую БД.

Какая же информация там хранится? По большей части, это информация об услугах, подключенных у абонента:
- может ли абонент совершать исходящие звонки
- может ли абонент отправлять/принимать SMS
- разрешена ли услуга конференц-связи
- ну и все остальные возможные услуги
Также здесь хранится такая важная информация, как идентификатор того MSC, в зоне действия которого сейчас находится абонент. Позже мы увидим для чего это может быть нужно.

MSC/VLR

MSC - Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR - Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.

MSC - классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции - для исходящего вызова - определить куда переключить вызов, для входящего же соединения - определить на какой BSC отправить вызов. Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR - MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.

AUC - AUthentication Center, центр аутентификации абонентов. Этот узел отвечает за то, чтобы злоумышленник не мог получить доступ к сети от вашего лица. Также этот узел генерирует ключи шифрования, с помощью которых шифруется ваше соединение с сетью в самом уязвимом месте - на радиоинтерфейсе.

GMSC - Gateway MSC, шлюзовой коммутатор. Этот узел сети используется только при входящих вызовах. У операторов есть определённая номерная ёмкость, этой номерной ёмкости сопоставляются шлюзовые коммутаторы сетей связи (сотовых, фиксированных). Когда вы набираете номер друга, ваш звонок доходит до коммутатора (MSC) вашей сети и он определяет куда дальше отправить этот вызов на основе имеющихся у него соответствий между номерами и шлюзами сетей. Звонок отправляется на GMSC сотового оператора, которым пользуется ваш друг. Далее GMSC делает запрос в HLR и узнаёт в зоне действия какого MSC сейчас находится вызываемый абонент. Туда дальше и перенаправляется вызов.

SGSN - Serving GPRS Support Node, обслуживающий узел поддержки GPRS. Этот узел отвечает за то, чтобы определить каким образом предоставлять услуги на основе запрошенной APN (Access Point Name, точки доступа, например, mms.beeline.ru). Также на этом узле осуществляется посчёт трафика.

GGSN - Gateway GPRS Support Node, шлюзовой узел поддержки GPRS. Ну это шлюз, отвечает за правильную доставку пакетов до пользователя.

BSC - Base Station Controller, контроллер базовых станций. Узел, к которому подключаются базовые станции, дальше он осуществляет управление базовыми станциями - назначает какому абоненту где сколько ресурсов выделить, определяет каким образом осуществляются хэндоверы. Когда с MSC приходит сигнал о входящем соединении для абонента, контроллер осуществляет процедуру пейджинга - через все подчинённые ему базовые станции посылает вызов данному абоненту, который должен отозваться через одну из базовых станций.

TRC - TRansCoder, транскодер. Устройство, отвечающее за перекодирование речи из формата GSM в стандартный формат телефонии, используемый в фиксированных сетях связи и обратно. Таким образом, получается, что речь передаётся в формате сетей фиксированной связи в сети GSM на участке от GMSC до TRC.

BTS - Base Transceiver Station, базовая приёмопередающая станция. Это то, что непосредственно находится близко к самому пользователю. Именно базовые станции образуют ту самую паутину, которой накрывают операторы сотовой связи, именно от их количества зависит территория, на которой предоставляют услуги операторы сотовой связи. По сути - довольно глупое устройство, оно обеспечивает выделение пользователям отдельных каналов связи, преобразует сигнал в высокочастотный, который будет передаваться в эфир, ну и выдаёт этот самый высокочастотный сигнал на антенны. А вот антенны то мы и можем наблюдать каждый день.

Хочу заметить, что антеннки - это не есть базовая станция:) Базовая станция похожа на холодильник - шкафчик с модулями, который стоит в специальном месте. Это специальное место - например, синенькие вагончики, которые ставятся под красно-белыми вышками где-нибудь в пригороде.




Top